期刊文献+

一种结合反馈信息的贝叶斯分类增量学习方法 被引量:5

Incremental learning method of Bayesian classification combined with feedback information
下载PDF
导出
摘要 贝叶斯分类器形成初期,训练集不完备,生成的分类器性能不理想且不能动态跟踪用户需求。针对此缺陷,提出一种结合反馈信息的贝叶斯分类增量学习方法。为有效降低特征间的冗余性,提高反馈特征子集的代表能力,用一种基于遗传算法的改进特征选择方法选取反馈集中最优特征子集修正分类器。通过实验分析了算法的性能,结果证明该算法能明显优化分类效果,且整体稳定性较好。 Owing to the insufficiency of the training sets, the performance of the initial classifier is not satisfactory and can not track the users' needs dynamically. Concerning the defect, an incremental learning method of Bayesian classifier combined with feedback information was proposed. To reduce the redundancy between features effectively and improve representative ability of feedback feature subset, an improved feature selection method based on Genetic Algorithm (GA) was used to choose the best features from feedback sets to amend classifier. The experimental results show that the algorithm optimizes classification significantly and has good overall stability.
出处 《计算机应用》 CSCD 北大核心 2011年第9期2530-2533,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873247) 山东省高新自主创新专项(2008ZZ28) 山东省自然科学基金重点资助项目(ZR2009GZ007)
关键词 反馈信息 遗传算法 特征选择 朴素贝叶斯 增量学习 feedback information Genetic Algorithm (GA) feature selection Naive Bayesian incremental learning
  • 相关文献

参考文献15

  • 1SEBASTIANI F. Machine learning in automated text categorization [ J]. ACM Computing Surveys, 2002, 34(1) : 11 - 12, 32 - 33. 被引量:1
  • 2陈景年,黄厚宽,田凤占,付树军.用于不完整数据的选择性贝叶斯分类器[J].计算机研究与发展,2007,44(8):1324-1330. 被引量:11
  • 3鲁明羽.Bayes文本分类器的改进方法研究[J].计算机工程,2006,32(17):63-65. 被引量:11
  • 4薛思君..基于增量式朴素贝叶斯分类方法的电梯交通模式识别方法的研究[D].重庆大学,2009:
  • 5宫秀军,刘少辉,史忠植.一种增量贝叶斯分类模型[J].计算机学报,2002,25(6):645-650. 被引量:55
  • 6罗福星.增量学习朴素贝叶斯中文分类系统的研究【D】.长沙:中南大学,2009. 被引量:1
  • 7COX I J, MILLER ML, OMOHUNDRO S M, et al. PicHunter: Bayesian relevance feedback for image retrieval system [ C]//Proceedings of the 13th International Conference on Pattern Recognition. Vienna: IEEE, 1996:361-569. 被引量:1
  • 8LEE J H. Combining the evidence of different relevance feedback methods for information retrieval[ J]. Information Processing & Management, 1998, 34(6) :681 -691. 被引量:1
  • 9ZHANG LEI, LIN FUZONG, ZHANG BO. Support vector machine learning for image retrieval [ C]//Proceedings of IEEE International Conference on Image Processing. Piscataway, NJ: IEEE, 2001: 721 - 724. 被引量:1
  • 10TAO DACHENG, TANG XIAOOU, LI XUELONG, etal. Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm [ J]. IEEE Transactions on Multimedia, 2006, 8(4) : 716 - 727. 被引量:1

二级参考文献34

共引文献82

同被引文献28

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部