期刊文献+

朴素贝叶斯分类器增量学习序列算法研究 被引量:10

Studies on Incremental Learning Sequence Algorithm of Naive Bayesian Classifier
下载PDF
导出
摘要 首先介绍了一种朴素贝叶斯增量分类模型,然后提出了一种新的序列学习算法以弥补其学习序列中存在的不足训练实例的先验知识得不到充分利用,测试实例的完备性对分类的影响在学习过程中得不到体现等。该算法引入一个分类损失权重系数λ,用于计算分类损失大小。引入该系数的作用在于充分利用先验知识对分类器进行了优化;通过选择合理的学习序列强化了较完备数据对分类的积极影响,弱化了噪音数据的消极影响,从而提高分类精度;弥补了独立性假设在实际问题中的不足等。 This paper first introduces an incremental classification model of nave Bayes,then puts forward a new se-quence learning algorithm to make up the deficiency of such models,such as prior knowledge of training instances could not be fully made use of,influence of the maturity of the testing instances upon classification couldn't be visual-ized in the learning process.This algorithm introduces a classifying loss weight coefficient λfor each training instance in order to calculate the total classifying loss.After introducing the coefficient ,the classifier is optimized by fully utiliz-ing the prior knowledge;by means of choosing reasonable learning sequence,positive influence of the maturer data on classification is strengthened and negative influence of the noise data is weakened and as a result,classification preci-sion is improved;deficiency of the independency assumption in practical operation is also made up.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第14期57-59,共3页 Computer Engineering and Applications
基金 安徽省自然科学基金(编号:03042305)资助
关键词 贝叶斯分类器 增量学习 共轭分布 Dirichlet分布 Bayesian Classfier,incremental learning,conjugate distribution,Dirichlet distribution
  • 相关文献

参考文献5

二级参考文献7

  • 1宫秀军 史忠植.基于贝叶斯潜在语义模型的半监督Web挖掘[J].软件学报,已录用,. 被引量:1
  • 2[1]Friedman N. Bayesian Network Classifiers. Machine Learning, 1997,29:131~163 被引量:1
  • 3[2]Duda R O, Hart P E- Pattern Classification and Scence Analysis, New York: John Wiley & Sons, 1973 被引量:1
  • 4[3]Langley P, et al. An analysis of Bayesian classifiers. In: Proc. Of the National Conf. On Artificial Intelligence (AAAI' 92). Menlo Park, CA: AAAI Press, 1992. 223~228 被引量:1
  • 5[4]Chow C K, Liu C N. Approximating discrete probability distributions with dependence tree. IEEE Trans. On Information Theory, 1968,14: 462~467 被引量:1
  • 6[5]Pearl J. Probabilistic Reasoning in Intelligent Systems. San Francisco ,CA: Morgan Kaufmann, 1988. 387~390 被引量:1
  • 7[6]Elkan C. Boosting and naive Bayesian learning : [Technical Report No. CS97-557]. Department of Computer Science & Engineering, Univ. Of California, 1997 被引量:1

共引文献83

同被引文献73

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部