期刊文献+

基于改进特征HMM的尖叫音频检测算法 被引量:2

The Approach to Detect Scream Audio Based on HMM of Improved Features
下载PDF
导出
摘要 提出了一种基于改进特征隐马尔科夫模型(HMM)的尖叫音频检测算法。它可以对视频中的尖叫片段进行检测,具有实时性和准确性的特点。对音频中的短时能量、过零率和梅尔频率倒谱系数等特征进行了分析,利用其统计学特性对这些特征进行了改进,提出了尖叫检测中新的音频特征。将新的音频特征融合进HMM中,提出了基于改进特征HMM的尖叫音频检测算法。通过实验验证了该算法的准确性和可行性。结果显示该算法的平均准确率高于97%且平均查全率高于94%,性能高于其他同类算法。 In this paper, we propose a new screaming audio detection algorithm based on the improved features of Hidden Markov Model (HMM). It can detect the scream segment of the video with real-time and precision characteristics. First, the short-term energy, zero cross rate and Mel frequency cepstral coefficient of audio were analyzed and using its statistical properties as improved features to detect screaming audio. Second, the new audio features were added into HMM, a new screaming audio detection algorithm based on the improved features of Hidden Markov Model was proposed. Finally, experiments validated the feasibility and accuracy of this algorithm. The result showed that the average rate of accuracy was higher than 97%, and the average recall was higher than 94% of this algorithm, the performance was higher than other similar algorithms.
出处 《山西农业大学学报(自然科学版)》 CAS 2009年第4期365-369,共5页 Journal of Shanxi Agricultural University(Natural Science Edition)
基金 山西农业大学科技创新基金(2005033)
关键词 尖叫 特征 统计学特性 隐马尔科夫模型 Scream, Feature Statistics characteristics Hidden Markov Model
  • 相关文献

参考文献11

  • 1Moncrieff, Dorai. Affect Computing in Film through Sound Energy Dynamics [J]. International Multimedia Conference: Proceedings of the ninth ACM international conference on Multimedia, 2001, 9: 525-527. 被引量:1
  • 2Min Xu, Liang-Tien Chia, Jesse Jin, et al. Affective Content Analysis in Comedy and Horror Videos by Audio Emotional Event Detection. IEEE International Conference on Multimedia and Expo, 2005: 121-135. 被引量:1
  • 3Rui Cai, Lie Lu, Hong-Jiang Zhang, et al. Highlight Sound Effect Detection in Audio Stream [J]. IEEE International Conference on Multimedia and Expo, 2005: 37-40. 被引量:1
  • 4Ma Yu-Fei, Xian-Sheng Hua, Lie Lu, et al. A Generic Framework of User Attention Model and Its Application in Video Summarization [J]. IEEE Transactions on Multimedia, 2005, 7 (5):907-919. 被引量:1
  • 5Li SZ. Content-based Classification and Retrieval of Audio using the Nearest Feature Line Method [J]. IEEE Transaction on Speech and Audio Processing, 2000, 8 (5) : 619-625. 被引量:1
  • 6Valenzise G, Gerosa L, Tagliasacchi, et al. Scream and gunshot detection and localization for audio-surveillance systems[J].IEEE Conference on Advanced Video and Signal Based Surveillance, 2007 (9) : 21-26. 被引量:1
  • 7马鸿飞,樊昌信,宋国乡.基于小波变换和音质模型的音频编码算法研究[J].电子学报,2000,28(1):26-29. 被引量:3
  • 8孙鹏..多声道音频编码算法的研究及优化[D].北京邮电大学,2007:
  • 9Juin-Hwey Chen. Adaptive postfiltering for quality enhancement of coded speech [J]. IEEE Transactions on Speech and Audio Processing, 1995, 3 (1): 59-71. 被引量:1
  • 10Mano K, T Moriya, S Miki, et al. Design of pitch synchronous innovation CELP coder for mobile communications[J]. IEEE Journal on Selected Areas in Communications, 1995, 13 (1): 31-40. 被引量:1

二级参考文献1

  • 1宋国乡,数值泛函及小波分析初步,1993年 被引量:1

共引文献2

同被引文献100

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部