期刊文献+

一类具有多个偏差变元的p-Laplacian中立型泛函微分方程的周期解 被引量:1

Periodic Solutions for a Kind of p-Laplacian Type Neutral Functional Differential Equation with Multiple Deviating Arguments
下载PDF
导出
摘要 利用重合度理论中的延拓定理和不等式分析技巧,获得了一类具有多个偏差变元的p-Laplacian中立型泛函微分方程(φp(x(t)-cx(t-r))′)′+f(x(t-τ(t)))x′(t-σ(t))+β(t)g(x(t-γ(t)))=e(t)的周期解存在性的充分条件,推广和改进了已有文献的相关结果. By using a continuation theorem based on coincidence degree theory and inequality technique, some new sufficient conditions of periodic solutions are established for p-Laplacian type neutral differential equation with multiple deviating arguments as follows (φp(x(t)-cx(t-r))')'-f(x(t-r(t)))x'(t=σ(t))+β(t)g(x(t-γ(t)))=e(t)The results have extended and improved the related reports in the literatures
出处 《广西民族大学学报(自然科学版)》 CAS 2011年第2期56-64,共9页 Journal of Guangxi Minzu University :Natural Science Edition
基金 国家自然科学基金(10671133)
关键词 多个偏差变元 p-Laplacian中立型泛函微分方程 周期解 重合度 multiple deviating arguments p-Laplacian type neutral functional differential equation periodic solutions coincidence degree
  • 相关文献

参考文献11

  • 1Wing-Sum Cheung, Jingli Ren. Periodic solutions for p- Laplacian Lienard equation with a deviating argument[J].Nonlinear Analysis,2004, 59:107-120. 被引量:1
  • 2Wing-Sum Cheung, Jingli Ren. On the existence of Periodic solutions for p- Laplacian generalized Lienard equation[J]. Nonlinear Analysis, 2005,60 : 65- 75. 被引量:1
  • 3Wing-Sum Cheung, Jingli Ren. Periodic solutions for p- Laplacian Rayleigh equations[J]. Nonlinear Analysis,2006,65..2003-2012. 被引量:1
  • 4Shiguo Peng, Siming Zhu. Periodic solutions for p- Laplaeian Rayleigh equations with a deviating argument[J]. Nonlinear Analysis,2007,67: 138-146. 被引量:1
  • 5Shiping Lu. Existence of periodic solutions to p-Laplacian equation with a deviating argument[J]. Nonlinear Analysis. ,2008,68:1453-1461. 被引量:1
  • 6王正新,王世朋,鲁世平.一类多偏差Liénard类型p-Laplace微分方程的周期解(英文)[J].安徽师范大学学报(自然科学版),2009,32(5):415-419. 被引量:2
  • 7Fabao Gao, Shiping Lu, Wei Zhang. Periodic solutions for p-Laplacian neutral Lienard equation with a sign-variable coefficient [-J']. NonlinearAnalysis, 2009,70 : 2072- 2077. 被引量:1
  • 8Shiping Lu, Weigao Ge, Zuxiu Zheng. Periodic solutions to neutral differential equation with deviating arguments[J]. Appl. Math. Comput, 2004,152:17-27. 被引量:1
  • 9Hale J K. Theory of Functional Differential Equations[M]. New York:Springer-Verlag, 1997. 被引量:1
  • 10Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equation[M]. New York: Springer-Verlag, 1997. 被引量:1

二级参考文献21

  • 1MANASEVICH Raul, MAWHIN Jean. Periodic solutions for nonlinear systems with p-Laplacianlike operations [J ]. J Differential Equations, 1998,145:367 - 393. 被引量:1
  • 2LU Shi-ping, GE Wei-gao. Periodic solutions for a kind of second order differential equation with multiple deviating arguments [J ]. Applied Mathematics and Computation, 2003,146:195 -209. 被引量:1
  • 3LU Shi-ping. Existence of periodic solutions to p-Laplacian Lienard differential equation with a deviating argument [J ]. Nonlinear Analysis, 2007,doi: 10. 1016/j. na. 2006.12. 041. 被引量:1
  • 4LU Shi-ping. New results on the existence of periodic solutions to a p-Laplacian Lienard differential equation with a deviating argument [J]. J Math Anal Appl, 2007,336:1107 - 1123. 被引量:1
  • 5CHENUG Wing-sun, REN Jing-li. On the existence of periodic solutons for p-laplacian generalized Lienard equation [J]. Nonlinear Analysis, 2005,60: 65 - 75. 被引量:1
  • 6LU Shi-ping, GUI Zhan-jie. On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay [J]. J Math Ananal Appl, 2007,325 : 685 - 702. 被引量:1
  • 7MEI Shang, LU Shi-ping. Periodic solutions for a kind of Dulling equation with a delay [J]. Jounal of Anhui Normal University: Natural Science, 2007,30(4) :425 - 428. 被引量:1
  • 8Lu S. P. and Ge W. G., Periodic solutions for a kind of Lienard equation with a deviating argument [J], J. Math. Anal. Appl., 2004, 289:231-243. 被引量:1
  • 9Wang G. Q., A priori bounds for periodic solutions of a delay Rayleigh equation [J], Applied Math. Letters, 1999, 12:41-44. 被引量:1
  • 10Lu S. P., Ge W. G. and Zheng Z. X., Periodic solutions for a kind of Rayleigh equation with a deviating argument [J], Applied Math. Letters, 2004, 17:443-449. 被引量:1

共引文献8

同被引文献35

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部