期刊文献+

具有多个偏差变元的Lienard型P-Laplacian泛函微分方程的周期解

Periodic Solutions for Lienard Type P-Laplacian Functional Differential Equation with Multiple Deviating Arguments
下载PDF
导出
摘要 利用重合度理论中的延拓定理和不等式分析技巧,获得了一类具有多个偏差变元的Lienard型p-Lapla-cian泛函微分方程的周期解存在性的新的充分条件,推广和改进了已有文献的相关结果. By using a continuation theory based on coincidence degree theory and inequality technique, some new sufficient conditions of periodic solutions are established for Lienard type P - Laplacian neutral functional differential equation with multiple deviating arguments. The results have extended and improved the related reports in the literatures.
作者 刘刚治
出处 《柳州师专学报》 2010年第2期119-126,共8页 Journal of Liuzhou Teachers College
关键词 偏差变元 Lineard型p-Laplacian泛函微分方程 周期解 重合度 deviating argument Lienard type P - Laplacian functional differential equation periodic solutions coincidence degree
  • 相关文献

参考文献3

二级参考文献38

  • 1Cheng W S, Ren J L. On the existence of periodic solutions for p-Laplacian generalized Lienard equation. Nonlinear Anal., 2005, 60: 65-75. 被引量:1
  • 2Lu S P, Ge W G, Zheng Zuxiu. Periodic solutions to neutral differential equation with deviating arguments. Appl. Math. Comput., 2004, 152: 17-27. 被引量:1
  • 3Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977. 被引量:1
  • 4Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977. 被引量:1
  • 5Del Pino M A, Elgueta M, Manasevich R F. A homotopic deformation along p of a Lerray-Schauder degree result and existence for (|u'|^P-2u')'+ f(t,u) = 0, u(0) = u(T) = 0,p > 1. J. Differential Equations, 1989, 80: 1-13. 被引量:1
  • 6Del Pino M A, Manasevich R F. Multiple solutions for the p-Laplacian under global nonresonance. Proc. Ameri. Math. Soc., 1991, 112: 131-138. 被引量:1
  • 7Fabry C, Fayyad D. Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Istit. Univ. Trieste, 1992, 24: 207-227. 被引量:1
  • 8Manasevich R F, Mawhin J. Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differential Equations, 1998, 145: 367-393. 被引量:1
  • 9DinR T, Iannacci R, Zanolin F. Existence and multiplicity results for periodic solutions of semilinear Duffing equations. J. Differential Equations, 1993, 105: 364-409. 被引量:1
  • 10DinR T, Iannacci R, Zanolin F. Time-maps for the solvability of perturbed nonlinear Duffing equations. Nonlinear Anal. Theory, Methods and Applications, 1991, 17: 635-653. 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部