期刊文献+

一类具有Robin条件的奇异椭圆方程无穷多解的存在性

The Existence of Infinitely Many Solutions for a Singular Elliptic Equation with Robin Boundary Condition
原文传递
导出
摘要 探讨了如下的一类具有Robin条件的奇异椭圆方程:其中Ω是R^N中具有C^1边界的有界区域,0∈Ω,N≥5,2~*(s)=2(N-s)/N-2(0≤s<2)是Sobolev-Hardy临界指数,0<μ<μ~*,γ是定义在边界Ω上的单位外法向量,α(x)为非负有界函数且α(x)∈L~∞(Ω).在f的非二次条件下,利用变分方法和对偶喷泉定理,证明了:存在λ~*>0,使得对于λ∈(0,λ~*),该问题有无穷多个解{u_k}H^1(Ω)满足(1)J(u_k)<0;(2)当k→+∞时,J(u_k)→0. This paper deals with the existence of infinitely many solutions of a singularelliptic equation with Robin boundary conditionwhereΩis a bounded domain in R^N with C^1 boundary,0∈Ω,N≥5.2~*(s)=(2(N-s))/(N-2)(0≤s2) is the Sobolev-Hardy critical exponent,0μμ~*,γdenotes the unitoutward normal to boundaryΩ.Under nonquadraticity conditions of f,by means of avariational method and dual fountain theorem,we show that there existsλ~*0 such thatfor anyλ∈(0,λ~*),the above problem admits a sequence of solutions u_kH^1(Ω) such thatJ(u_k)0 and J(u_k)→0 as k→+∞.
出处 《应用数学学报》 CSCD 北大核心 2011年第4期644-654,共11页 Acta Mathematicae Applicatae Sinica
基金 新疆维吾尔自治区高校科研计划科学研究重点(XJEDU2008131) 喀什师范学院重点课题资助项目((09)2267)
关键词 Robin条件 SOBOLEV-HARDY临界指数 (PS)_c~*条件 对偶喷泉定理 非二次条件 Robin problem critical Sobolev-Hardy exponent (ps)_c~* condition dual fountain theorem nonquadraticity condition
  • 相关文献

参考文献11

  • 1Han Pigong. Many Solutions for Elliptic Equations with Critical Exponents. Israel J. Math., 2008, 164:125-152. 被引量:1
  • 2Ghoussoub N, Yuan C. Multiple Solutions for Quasi-linear PDEs Involving the Critical Sobolev-Hardy Exponents. Trans. Amer. Math. Soc., 2000, 352(12): 5703-5734. 被引量:1
  • 3王征平,阮立志.含有Sobolev-Hardy临界指标的奇异椭圆方程无穷多解的存在性[J].应用数学,2004,17(4):639-648. 被引量:5
  • 4胡爱莲,张正杰.含有Sobolev-Hardy临界指标的奇异椭圆方程Neumann问题无穷多解的存在性[J].数学物理学报(A辑),2007,27(6):1025-1034. 被引量:9
  • 5Han Pigong. Asymptotic Behavior of Solutions to Semilinear Elliptic Equations with Hardy Potential. Proc. Amer. Math. Soe., 2007, 135(2): 365-372. 被引量:1
  • 6Han Pigong, Liu Zhaoxia. Solutions to Nonlinear Neumann Problems with an Inverse Square Potential. Calc. Var. Partial Differential Equations, 2007, 30(3): 315-352. 被引量:1
  • 7Cao Daomin, Han Pigong. Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential. J. Differential Equations, 2004, 205(2): 521-537. 被引量:1
  • 8Bartsch T, Willem M. On an Elliptic Equation with Concave and Convex Nonlinearity. Proc. Amer. Math. Soc., 1995, 123:3555-3561. 被引量:1
  • 9Willem M. Minimax Theorems. Boston: Birkhauser, 1996. 被引量:1
  • 10Brezis H, Lieb E. Relation Between Positive Convergence of Functions and Convergence of Functionals Proc. Amer. Math. Soc., 1983, 88:486-490. 被引量:1

二级参考文献9

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部