摘要
探讨了如下的一类具有Robin条件的奇异椭圆方程:其中Ω是R^N中具有C^1边界的有界区域,0∈Ω,N≥5,2~*(s)=2(N-s)/N-2(0≤s<2)是Sobolev-Hardy临界指数,0<μ<μ~*,γ是定义在边界Ω上的单位外法向量,α(x)为非负有界函数且α(x)∈L~∞(Ω).在f的非二次条件下,利用变分方法和对偶喷泉定理,证明了:存在λ~*>0,使得对于λ∈(0,λ~*),该问题有无穷多个解{u_k}H^1(Ω)满足(1)J(u_k)<0;(2)当k→+∞时,J(u_k)→0.
This paper deals with the existence of infinitely many solutions of a singularelliptic equation with Robin boundary conditionwhereΩis a bounded domain in R^N with C^1 boundary,0∈Ω,N≥5.2~*(s)=(2(N-s))/(N-2)(0≤s2) is the Sobolev-Hardy critical exponent,0μμ~*,γdenotes the unitoutward normal to boundaryΩ.Under nonquadraticity conditions of f,by means of avariational method and dual fountain theorem,we show that there existsλ~*0 such thatfor anyλ∈(0,λ~*),the above problem admits a sequence of solutions u_kH^1(Ω) such thatJ(u_k)0 and J(u_k)→0 as k→+∞.
出处
《应用数学学报》
CSCD
北大核心
2011年第4期644-654,共11页
Acta Mathematicae Applicatae Sinica
基金
新疆维吾尔自治区高校科研计划科学研究重点(XJEDU2008131)
喀什师范学院重点课题资助项目((09)2267)