摘要
研究了有界区域ΩRN上奇异椭圆方程-Δu-μu|x|2=|u|2*(s)-2u|x|s+fλ(x,u)无穷多解的存在性.在f满足非二次条件的情况下,运用对偶喷泉定理证明了存在λ*>0,使得,当λ∈(0,λ*)时,该方程有无穷多个弱解{uk}满足I(uk)<0,并且I(uk)→0,k→+∞.
This paper deals with the existence of infinitely many solutions of the following singular elliptic equation:-Δu-μu|x|2=|u|2*(s)-2u|x|s+λf(x,u).If f satisfies nonquadraticity condition,using variational methods,via dual fountain theorem,proved that there exists there exists λ*〉0 such that for any λ∈(0,λ*),this problem has a sequence of solutions{uk}H10(Ω)such that I(uk)〈0 and I(uk)→0 as k→+∞.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2007年第4期10-16,共7页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471113)