期刊文献+

含有Sobolev-Hardy临界指标的奇异椭圆方程无穷多解的存在性 被引量:5

The Existence of Infinitely Many Solutions for a Singular Elliptic Equation Involving Critical Sobolev-Hardy Exponent
下载PDF
导出
摘要 该文研究如下奇异椭圆方程-Δu- μu|x|2 =|u|2 (s) -2 u|x|s +λ|u|q-2 u ,u∈H10 (Ω) , x∈Ω ,0 ≤ μ< μ =(N- 2 ) 24 ,其中Ω是RN 中的有界区域 ,0 ∈Ω ,N≥ 3.2 (s) =2 (N -s)N- 2 ( 0 ≤s≤ 2 )是临界Sobolev Hardy指标 ,1 <q<2 .利用对偶喷泉定理我们证明了这个方程无穷多解的存在性 . In this paper,we study the singular elliptic equation-Δu-μu|x|2=|u| 2*(s)-2u|x|s+λ|u| q-2u, u∈H1 0(Ω), x∈Ω, 0≤μ<=(N-2)24,where Ω is a smooth bounded domain in RN,N≥3,0∈Ω,2*(s)=2(N-s)N-2(0≤s<2) is the critical Sobolev-Hardy exponent,1<q<2.By using the dual fountain theorem,we get the existence of infinitely many solutions of the equation.
出处 《应用数学》 CSCD 北大核心 2004年第4期639-648,共10页 Mathematica Applicata
基金 国家自然科学基金资助项目 (NSFC10 2 71118)
关键词 临界Sobolev—Hardy指标 对偶喷泉定理 无穷多解 (ps)c^*条件 Critical Sobolev-Hardy exponent The dual fountain theorem Infinitely many solutions (ps)* c condition
  • 相关文献

参考文献7

  • 1Cheng Ting,Zhao X C. Existence of multiple solutions for-△u-μ(μ|x|^2) = u^2x-1 +σf(x) [J].Math Meth Appl Sci , 2002,25 : 1307 - 1336. 被引量:1
  • 2Bandle C,Fucher M. Table of inequalities in elliptic boundary value problems of recent progress in inequalities[M]. Dordrecht,Netherlands:Kluwer Academic Publishers,1998. 被引量:1
  • 3Nehari Z. Characteristic values associated with a class of nonlinear second differential equations[J]. Acta Math ,1961,105 : 141-175. 被引量:1
  • 4Willem M. Minimax theorem[M]. Boston.. Birkhhauser, 1996. 被引量:1
  • 5Ghoussoub N,Yuan C. Multiple solutions for a quasi-linear PDES involving the critical sobolev and Hardy exponents[J]. Trans Amer Math Soc , 2000,352 : 5703-5743. 被引量:1
  • 6Caffararelli L, Vohn R, Nirenberg L. First order interpolation inequality with weights[J]. Composition Math ,1984,53:259-275. 被引量:1
  • 7Jannelli E. The role played by space dimension in elliptic critical problems[J]. Journal of Differential Equations, 1999,156:407 - 426. 被引量:1

同被引文献17

  • 1韩丕功.NEUMANN PROBLEMS OF A CLASS OF ELLIPTIC EQUATIONS WITH DOUBLY CRITICAL SOBOLEV EXPONENTS[J].Acta Mathematica Scientia,2004,24(4):633-638. 被引量:3
  • 2Han Pigong. Many Solutions for Elliptic Equations with Critical Exponents. Israel J. Math., 2008, 164:125-152. 被引量:1
  • 3Ghoussoub N, Yuan C. Multiple Solutions for Quasi-linear PDEs Involving the Critical Sobolev-Hardy Exponents. Trans. Amer. Math. Soc., 2000, 352(12): 5703-5734. 被引量:1
  • 4Han Pigong. Asymptotic Behavior of Solutions to Semilinear Elliptic Equations with Hardy Potential. Proc. Amer. Math. Soe., 2007, 135(2): 365-372. 被引量:1
  • 5Han Pigong, Liu Zhaoxia. Solutions to Nonlinear Neumann Problems with an Inverse Square Potential. Calc. Var. Partial Differential Equations, 2007, 30(3): 315-352. 被引量:1
  • 6Cao Daomin, Han Pigong. Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential. J. Differential Equations, 2004, 205(2): 521-537. 被引量:1
  • 7Bartsch T, Willem M. On an Elliptic Equation with Concave and Convex Nonlinearity. Proc. Amer. Math. Soc., 1995, 123:3555-3561. 被引量:1
  • 8Willem M. Minimax Theorems. Boston: Birkhauser, 1996. 被引量:1
  • 9Brezis H, Lieb E. Relation Between Positive Convergence of Functions and Convergence of Functionals Proc. Amer. Math. Soc., 1983, 88:486-490. 被引量:1
  • 10Wang X. Neumann Problems of Semilineax Elliptic Equations Involving Critical Sobolev Exponents J. Diff. Eq., 1991, 93:283-310. 被引量:1

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部