摘要
该文讨论了共振情形下四阶p-Laplace方程四点边值问题(φ_p(u″(t)))″=f(t,u(t),u′(t),u″(t)),0<t<1,u(0)=0,u(1)=au(ξ),u″(0)=0,u″(1)=bu″(η),这里0<ξ,η<1;a,b>0使得aξ=1且b^(p-1)η≤1.运用重合度理论得到该问题解的存在性结论.
This paper deals with the fourth order boundary value problem with p-Laplace at resonance(φp(u''(t)))''=f(t,u(t),u'(t),u''(t)),0〈t〈1,u(0)=0,μ(1)=au(ξ),u''(0)=0,u''(1)=bu''(η),where 0〈 ξ, η 〈 1;a, b 〉0 such that aξ = 1 and b^P-1η 〈 1. The existence of solutions is obtained by means of Mawhin's continuation theorem.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2011年第3期829-836,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(10371006)
安徽省自然科学基金(050460103)
安徽省教育厅重点基金(2005kj031ZD)资助
关键词
四阶边值问题
P-LAPLACE方程
共振
重合度.
Fourth order boundary value problem
p-Laplace equation
Resonance
Theory ofcoincidence degree.