期刊文献+

一类四阶p-Laplace方程边值问题解的存在性 被引量:1

Existence of Soluation for a Fourth Order p-Laplacian Equation Boundary Value Problem
下载PDF
导出
摘要 研究一类四阶p-Laplace方程的边值问题:.利用Leray-Schauder原理,在f(t,x,y)关于变量x。 This paper deals with the existence of a solution for a fourth-order p-Laplacian equation boundary value problem: {[φp(u″(t))]″+f(t,u(t),u″(t))=e(t),0≤t≤1; u(0)=u(1)=u″(0)=u″(1)=0. and the different case for the degree of power with respect to the variables x and y off(t,x,y).
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第2期214-218,共5页 Journal of Jilin University:Science Edition
基金 教育部重点项目基金(批准号:2007047) 安徽省自然科学基金(批准号:050460103) 安徽省教育厅重点项目基金(批准号:2005KJ031ZD)
关键词 边值问题 Leray—Schauder原理 P-LAPLACE方程 boundary value problem Leray-Schauder continuous theorem p-Laplacian equation
  • 相关文献

参考文献2

二级参考文献11

  • 1翁世有,高海音,张晓颖,蒋达清.一维p-Laplacian奇异边值问题的存在性原则[J].吉林大学学报(理学版),2006,44(3):351-356. 被引量:4
  • 2郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2002.193~194 被引量:31
  • 3LU Hai-shen, O' Began Donal, ZHONG Cheng-kui. Multiple Positive Solutions for the One-dimensinal Singular p-Laplacian [ J]. Applied Mathematics and Computation, 2002, 133 : 407-422. 被引量:1
  • 4CHEUNG Wing-sum, BEN Jing-li. On the Existence of Periodic. Solutions for p-Laplacian Generatized Lienard Equation[J]. Nonlinear Analysis, 2005, 60: 65-75. 被引量:1
  • 5Garcid-Huidobro M, Gupta C P, Manasevich R. An m-Point Boundary Value Problem of Neumann Type for a p-Laplaeian Like Operator [ J ]. Nonlinear Analysis, 2004, 56: 1071-1089. 被引量:1
  • 6Ben-Naoum A K, De Coster C. On the p-Laplacian Separated Boundary Value Problem [ J ]. Differential and Integral Equations, 1997, 10(6): 1093-1112. 被引量:1
  • 7GUO Da-jun, Lakshmikanthamv V. Nonlinear Problems in Abstract Cones [M]. San Diego: Academic Press, 1988. 被引量:1
  • 8WANG Jun_yu.The existence of positive solutions for the one_dimensional p_Laplacian[].Proceedings of the American Mathematical Society.1997 被引量:1
  • 9Lian W C,Wong F H,Yeh C C.On the existence of positive solutions of nonlinear second order differential equations[].Proceedings of the American Mathematical Society.1996 被引量:1
  • 10Ma R Y,Wang H Y.On the existence of positive solutions of fourth_order ordinary differential equations[].Applicable Analysis.1995 被引量:1

共引文献12

同被引文献9

  • 1Cheung W S, Ren J L. Periodic solution for p-Laplaician Lienard equation with a deviating argument[J]. Nonlinear Analysis, TMA, 2004,59(1 -2) : 107- 120. 被引量:1
  • 2Cheung W S, Ren J L. Periodic solution for p-Laplaician differential equation with multiple deviating arguments[J]. Nonlinear Analysis, TMA, 2005,62 : 727- 742. 被引量:1
  • 3Fan X L, Han X Y. Existence and multiplicity of solutions for p(x)-Laplaieian equation in R^N[J]. Nonlinear Analysis, TMA, 2004, 59.. 173-188. 被引量:1
  • 4Lu S P, Gui Z J. On the existence of periodic solutions to a p-Laplaieian Rayleigh differential equation with a delay[J]. J. Math. Anal. Appl. , 2007, 325: 685-702. 被引量:1
  • 5Fabry C. and Fayyad D. Periodic solutions of second order differential equations with a p-Laplaician and asymmetric nonliearities[J]. Rend. Ist. Univ. Trieste 1992, 24: 207-227. 被引量:1
  • 6Pao C V. On fourth-order elliptic boundary value problems[J]. Proc. Amer. Math. Soc. , 2000, 128:1023-1030. 被引量:1
  • 7Bai Z B and Weigao Ge. The interative solutions for some fourth order p-Laplaician equation boundary value problems[J]. Appl. , Math. Letters,2006, 19:8-14. 被引量:1
  • 8Shan J, Shiping L. Periodic solutions for a fourth-order p-Laplaician differential equation with a deviating argument[J]. Nonlinear Anal. TMA, 2008, 69 : 1710- 1718. 被引量:1
  • 9Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equation[M]. Berlin: Springer, 1977. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部