期刊文献+

奇异扰动的p-Laplace方程非负非平凡解和正解的结构 被引量:1

Structure of Nonnegative Nontrivial and Positive Solutions of Singularly Perturbed p-Laplace Equations
下载PDF
导出
摘要  精确地刻画了某些奇异扰动的p_Laplace方程非负非平凡解和正解的结构· 利用上下解方法证明。 Structure of nonnegative nontrivial and positive solutions was precisely studied for some singularly perturbed p-Laplace equations. By virtue of sub- and supersolution method, it is shown that there are many nonnegative nontrivial spike-layer solutions and positive intermediate spike-layer solutions. Moreover, the upper and lower bound on the measure of each spike-layer were estimated when the parameter is sufficiently small.
出处 《应用数学和力学》 EI CSCD 北大核心 2004年第8期847-854,共8页 Applied Mathematics and Mechanics
基金 国家重点基础研究专项基金资助项目(1999032801) 国家自然科学基金资助项目(10371095)
关键词 P-LAPLACE方程 非负非平凡解 正解 尖峰解 上下解 p-Laplace equation nonnegative nontrivial solution positive solution spike-layer solution sub- and supersolution
  • 相关文献

参考文献18

  • 1Guo Z M, Webb J R L, Large and small solutions of a class of quasilinear elliptic eigenvalue problems[ J]. J Differential Equations ,2002,180( 1): l-50. 被引量:2
  • 2ZHANG Zheng-ce, LI Kai-tal. Spike-layered solutions of singularly perturbed quasilinear Dirichlet problems[ J]. J Math Anal Appl,2003,283(2) :667-680. 被引量:2
  • 3Dancer E N, Wei J C. On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem[ J ]. Proc Roy Soc Edinburgh Sect A, 1997,127 (4) :691-701. 被引量:2
  • 4Ni W M, Takagi I, Wei J C.On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problems: Intermediate solutions [ J ]. Duke Math J, 1998,94 (3): 597-618. 被引量:2
  • 5Dancer E N, Wei J C. On the location of spikes of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem[ J]. J Differential Equations, 1999,157( 1 ): 82-101. 被引量:1
  • 6Vazquez J L. A strong maximum principle for some quasilinear elliptic equations[ J]. Appl Math Optim, 1984,12(3): 191-202. 被引量:2
  • 7Diaz J I, Herrero M A. Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems [ J ]. Proc Roy Soc Edinburgh Sect A, 198 l, 89 ( 2 ): 249-258. 被引量:2
  • 8Gidas B, Ni W M, Nirenberg L. Symmetry and related properties via the maximum principle [ J ].Comm Math Phys , 1979,68(3) :209-243. 被引量:1
  • 9Brock F. Continuous rearrangement and symmetry of solutions of elliptic problems[ J]. Proc Indian Acad SciMath Sci, 2000,110(2): 157-204. 被引量:1
  • 10Brock F. Radial symmetry for nonnegative solutions of semilinear elliptic equations involving the pLaplacian[ A, J]. In: Amann H, Bandle C, Chipot M, et al Eds. Progress in Partial Differential Equations [C] .Vol 1. Pont-a-Mousson 1997,1-12; Pitman Res No 被引量:1

二级参考文献8

  • 1Guo Zongming,Acta Math Sin New Ser,1998年,14卷,2期,245页 被引量:1
  • 2Yang Zuodong,Appl Math J Chin Univ,1997年,12卷,4期,399页 被引量:1
  • 3Guo Zongming,数学年刊.A,1996年,17卷,3期,573页 被引量:1
  • 4Yang Zuodong,Appl Anal,1995年,58卷,1期,31页 被引量:1
  • 5Wu Z Q,J Partial Diff Eqs,1995年,8卷,1期,89页 被引量:1
  • 6Wang Junyu,Proc Am Math Soc,1997年,125卷,8期,2275页 被引量:1
  • 7Lian W C,Proc Am Math Soc,1996年,124卷,4期,1117页 被引量:1
  • 8Ma R Y,Appl Anal,1995年,59卷,1期,225页 被引量:1

共引文献16

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部