期刊文献+

间接使用扩展规则求解#SAT问题 被引量:2

Solving #SAT with extension rule indirectly
下载PDF
导出
摘要 针对求解#SAT问题时算法时间会随着子句集的规模迅速增加的问题,提出一种间接应用扩展规则的MCEHST算法。该算法首先求出子句集的所有极小碰集,然后应用扩展规则计算这些极小碰集所能扩展出的极大项的数量,即模型数。实验结果表明:MCEHST算法运行时间随子句集规模增加的速度要比CDP和CER算法慢;当子句的长度较短、子句数较多时,MCEHST算法的时间效率较高。 Satisfiability(#SAT) is an important problem in artificial intelligence.May algorithms for solving #SAT problem are only appropriate for small clause number.The runtime increases rapidly with the enhancement of clause sets' scale.We propose a new algorithm,named MCEHST,using extension rule indirectly.There two steps in this method.The first step calculates all minimal hitting sets of a clause set.The second step counts models with these hitting sets using extension rule.Experiment results show that the proposed MCEHST is more efficient than CDP and CER under large clause number and short clause length.Using MCEHST the increase in runtime is slower than CDP and CER.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期1047-1053,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金重大项目(60496320 60496321) 国家自然科学基金项目(60973089 60773097 60873148) 吉林省科技发展计划项目(20080107) 欧盟合作项目(155776-EM-1-2009-1-IT-ERAMUN-DUS-ECW-L12)
关键词 人工智能 自动推理 扩展规则 碰集 CDP算法 CER算法 artificial intelligence automated reasoning extension rule hitting set CDP algorithm CER algo rithm
  • 相关文献

参考文献15

  • 1Sang Tian, Beame Paul, Kautz Henry. Performing Bayesian inference by weighted model counting[C]// Proceedings of the National Conference on Artificial Intelligence,Menlo Park.. AAAI Press, 2005: 475- 481. 被引量:1
  • 2Roth Dan. On the hardness of approximate reasoning [J]. Artificial Intelligence, 1996, 82(1-2) : 273-302. 被引量:1
  • 3Velev Miroslav, Bryant Randal. Effective use of Boolean satisfiability procedures in the formal verifi- cation of superscalar and VLIW microprocessors[J]. Journal of Symbolic Computation, 2003, 35(2): 73- 106. 被引量:1
  • 4Kautz Henry, Selman Bart. Planning as satisfiability [C] // Proceedings of the 10th European Conference on Artificial Intelligence, New York: John Wiley Sons, Iv c, 1992: 359-363. 被引量:1
  • 5Freeman Jon William. Improvements to propositional sadsfiability search algorithms[D]. Pennsylvania: U- niversity of Pennsylvania, 1995. 被引量:1
  • 6Birnbaum Elazar, Lozinskii Eliezer. The good old Da- vis-Putnam procedure helps counting models [J]. Journal of Artificial Intelligence Research, 1999, 10 (1):457-477. 被引量:1
  • 7Davis Martin, Logemann George, Loveland Donald. A machine program for theorem proving[J]. Commu- nications of the ACM, 1962, 5:394-397. 被引量:1
  • 8殷明浩,林海,孙吉贵.一种基于扩展规则的#SAT求解系统[J].软件学报,2009,20(7):1714-1725. 被引量:17
  • 9Lin Hal, Sun Ji-gui, Zhang Yi-min. Theorem proving based on the extension rule[J]. Journal of Automated Reasoning, 2003, 31:11-21. 被引量:1
  • 10Reiter Raymond. A theory of diagnosis from first principles[J]. Artificial Intelligence, 1987, 32:57 95. 被引量:1

二级参考文献13

  • 1WUXia SUNJigui LINHai FENGShasha.Modal extension rule[J].Progress in Natural Science:Materials International,2005,15(6):550-558. 被引量:7
  • 2[1]Hamscher W C, Console L, de Kleer J eds. Readings in model-based diagnosis. San Mateo. CA, USA: MorganKaufmann Publishers, 1992. 被引量:1
  • 3[2]Console L, Dressler O. Model-based diagnosis in the real world: lessons learned and challenges remaining. In:Thomas Dean ed. Proc. 16th IJCAI, Stockholm, Sweden: Morgan-Kaufmann Publishers, 1999. 1393~ 1400. 被引量:1
  • 4[3]Struss P. Knowledge-based diagnosis: an important challenge and touchstone for AI. Proc. 10th European Conf. on AI. , Vienna, 1992,863~874. 被引量:1
  • 5[4]de Kleer J,Mackworth A K,Reiter R. Characterizing diagnosis and systems. Artificial Intelligence, 1992,56 (2~3) :197~222. 被引量:1
  • 6[8]Karp R. M. Reducibility among combinatorial problems.In:Miller Thacher eds. Complexity of Computer Computations. New Yourk: Plenum Press, 1972.85~103. 被引量:1
  • 7[9]Reiter R. A Theory of diagnosis from first principles.Artificial Intelligence. 1987,32(1) :57~96. 被引量:1
  • 8[10]Greiner R,Smith B A,et al.. A correction to the algorithm in Reiter's theory of diagnosis. Artificial Intelligence, 1989,41(1):79~88. 被引量:1
  • 9[11]Slagle J. R, Chang C, Lee R C. A new algorithm for generating prime implicants. IEEE Trans. On Computers, 1970,19(4). 被引量:1
  • 10[12]欧阳丹彤.Kernel model-based diagnosis.Progress in Natural Science,2002,12(2):141~145(被SCI、EI收录). 被引量:1

共引文献23

同被引文献13

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部