期刊文献+

隐蔽集的研究及发展 被引量:4

Research and Development in Backdoor Set
下载PDF
导出
摘要 SAT问题的隐藏结构与问题难度有很大的关系,近年来成为人工智能的一个研究热点。隐蔽集(Backdoor)作为典型的隐藏结构之一,能使剩下的问题在多项式时间内求解。在深入研究隐蔽集的基础上,首先对隐蔽集的发展、相关概念、参数复杂性及隐蔽集与骨架(Backbone)之间的关系作了全面的论述;接着分别从CSP问题、SAT问题和QBF问题3个方面具体介绍了目前比较流行的隐蔽集求解方法;最后给出了3个未解决的问题,并对隐蔽集的发展趋势进行了展望。 There is a great relationship between hidden structure of Propositional Satisfiability problem and problem hardness,which becomes a focus of study in recent years. Backdoor is one of these hidden structures,which makes the remaining questions can be solved in polynomial time. Through the study of this backdoor questions, firstly this paper made more comprehensive introduction about the developing of backdoor problem, related concepts of backdoor problem, parametric complexity of backdoor problem and relationship between backbone and backdoor. Then introduced more specific solution of backdoor set from these aspects, such as Constraint Satisfaction Problem (CSP) , Propositional Satisfiability Problem and Quantified Boolcan Formulae (QBF). At the same time, summarized some unresolved queslions and prospects of the backdoor sets.
出处 《计算机科学》 CSCD 北大核心 2010年第3期11-16,共6页 Computer Science
基金 国家自然科学基金(60473042 60573067和60803102)资助
关键词 SAT问题 QBF问题 隐藏结构 隐蔽集 Propositional satisfiability problem,Quantified boolean formulae, Hidden structure,Backdoor set
  • 相关文献

参考文献43

  • 1Williams R,Gomes C,Selman B. Backdoors to typical case complexity[C]//Proc, of the 18^th Intemational Joint Conference on Artificial Intelligence ( IJCAI ' 03). 2003 : 1173-1178. 被引量:1
  • 2Lynce L, Marques-Silva J P. Hidden structure in unsatisfiable random 3-SAT: an empirical study[C]//ICTAI ' 04. 2004 : 246- 251. 被引量:1
  • 3Nishimura N, Ragde P, Szeider S. Detecting backdoor sets with respect to Horn and binary clauses[C]// Proc. of the Seventh International Conference of Theory and Applicatiions of Satisfiability Testing. May 2004:96-103. 被引量:1
  • 4Ruan Y, Kautz H A, Horvitz E. The backdoor key: a path to un - derstanding problem hardness[C]//AAAI'04. 2004:124-130. 被引量:1
  • 5Szeider S. Backdoor sets for DLL subsolvers[J]. Journal of Automated Reasoning, 2005,35 (1-3) : 73-88. 被引量:1
  • 6Kilby P, Slaney J, Thiebaux S, et al. Backbones and backdoors in satisfiability[C] // AAAI'05. 2005 : 1368-1373. 被引量:1
  • 7Paris L,Ostrowski P R,Siegel P. Computing Horn Strong Backdoor Sets Thanks to Local Search[C]//ICTAI. 2006:139-143. 被引量:1
  • 8Gregory P,Long D, Fox M. Backdoors in Planning and Scheduling Problems[C] //ICAPS. 2006 : 46-50. 被引量:1
  • 9Samer M, Szeider S. Backdoor sets of quantified Boolean formulas[C]ffSAT'07. LNCS 4501. 2007:230-243. 被引量:1
  • 10Samer M,Szeider S. Backdoor Trees[C]//Proceedings of AAAI 08, Twenty- Third Conference on Artificial Intelligence. Chicago, Illinois: AAAI Press,July 2008 : 363-368. 被引量:1

共引文献1

同被引文献28

  • 1Samer M, Szeider S. Backdoor sets of quantified Boolean formulas. SAT'07. LNCS 4501. 2007. 230-243. 被引量:1
  • 2Yang JC, Li SX, Wang JY. Computation of renameable horn backdoors for quantified boolean formulas. Future Computer and Communication (ICFCC), 2010 2rid International Conference on. IEEE. 2010. 841-844. 被引量:1
  • 3Samer M, Szeider S. Backdoor Sets Of Quantified Boolean Formulas. Journal of Automated Reasoning, 2009, 42(1): 77-97. 被引量:1
  • 4Egly U, Tompits H, Woltran S. On quantifier shifting for quantified Boolean formulas. Proc. SAT'02 Workshop on Theory and Applications of Quantified Boolean Formulas. Informal Proceedings. 2002.48-61. 被引量:1
  • 5Williams R, Gomes C, Selman B. Backdoors to typical case complexity. Proc. of the 18th International Joint Conference on Artificial Intelligence. IJCAI. 2003.1173-1178. 被引量:1
  • 6Fox D. Backdoor. Datenschutz und Datensicherheit - DuD, 2014, 38(2): 119-119. 被引量:1
  • 7Szeider S. Backdoors to tractable answer-set programming. Artificial Intelligence, 2015: 64-103. 被引量:1
  • 8Gaspers S, Ordyniak S, Szeider S, et al. Backdoors into heterogeneous classes of SAT and CSP. AAAI Conference on Artificial Intelligence. AAAI Press, 2014: 2652-2658. 被引量:1
  • 9孙吉贵,李莹,朱兴军,吕帅.一种新的基于扩展规则的定理证明算法[J].计算机研究与发展,2009,46(1):9-14. 被引量:17
  • 10赖永,欧阳丹彤,蔡敦波,吕帅.基于扩展规则的模型计数与智能规划方法[J].计算机研究与发展,2009,46(3):459-469. 被引量:22

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部