期刊文献+

基于IMOM和IBOHM启发式策略的扩展规则算法 被引量:11

Extension Rule Algorithms Based on IMOM and IBOHM Heuristics Strategies
下载PDF
导出
摘要 基于扩展规则的方法是一种定理证明方法.在IER(improved extension rule)扩展规则算法的基础上,提出了IMOM(improved maximum occurrences on clauses of maximumsize)和IBOHM(improved BOHM)启发式策略,并将两种启发式策略用于IER算法中,有指导性地选择限定搜索空间的子句,设计并实现了算法IMOMH_IER和IBOHMH_IER.实验结果表明,由于这两种启发式策略能够选择较为合适的搜索空间,可以尽快地判定出原问题是否可满足,故其速度平均能够达到原有算法DR(directional resolution)和IER的10~200倍. Extension rule-based theorem proving is a splendid reasoning method. Based on the extension rule algorithm IER (improved extension rule), this paper proposes IMOM (improved maximum occurrences on clauses of maximum size) and IBOHM (improved BOHM) heuristic strategies in order to give guidance while choosing the clause that limits the search space. This paper applies these two heuristic strategies to the algorithm IER, designs and implements the algorithms IMOMH_IER and IBOHMH IER. Since more appropriate search space can be obtained with these two heuristic strategies, the algorithms can decide whether the original question is satisfiable in a fraction of a second. Experimental results show that the speed of the algorithms is 10-200 times that of the existing algorithms DR (directional resolution) and IER.
出处 《软件学报》 EI CSCD 北大核心 2009年第6期1521-1527,共7页 Journal of Software
基金 国家自然科学基金No.60773097 吉林省青年科研基金No.20080107~~
关键词 定理机器证明 命题逻辑 扩展规则 启发式策略 归结 theorem proving propositional logic extension rule heuristic strategy resolution
  • 相关文献

参考文献14

  • 1Fenkam P, Jazayeri M, Reif G. On methodogies for constructing correct event-based applications. In: Carzaniga A, Fenkam P, eds. Proc. of the 3rd Int'l Workshop on Distributed Event-Based Systems. Oakland: IEEE Computer Press, 2004. 38-43. 被引量:1
  • 2Kubica J, Rieffel EG. Collaborating with a genetic programming system to generate modular robotic code. In: Jangdon WB, et al. eds. Proc. of the Genetic and Evolutionary Computation Conf. New York: Morgan Kaufmann, 2002. 804-811. 被引量:1
  • 3Robinson JA. A machine oriented logic based on the resolution principle. Journal of the ACM, 1965,12(1):23-41. 被引量:1
  • 4Moser M, Ibens O, Ietz R, Steinbach J, Goller C, Schumann J, Mayr K. SETHEO and E-SETHEO-the CADE-13 systems. Journal of Automated Reasoning, 1997,18(2):237-246. 被引量:1
  • 5Dyckhoff R, Pinto L. Cut-Elimination and a permutation-free sequent calculus for intuitionistic logic. Studia Logica, 1998,60(12): 107-118. 被引量:1
  • 6Polakow J, Pfenning F. Relating natural deduction and sequent calculus for intuitionistic non-commutative linear logic. Electronic Notes in Theoretical Computer Science, 2004,20(18): 1-18. 被引量:1
  • 7Lin H, Sun JG, Zhang YM. Theorem proving based on extension rule. Journal of Automated Reasoning, 2003,31 (1): 11-21. 被引量:1
  • 8Wu X, Sun JG, Lu S, Li Y, Meng W. Improved propositional extension rule. In: Wang GY, Peters JF, Skowron A, eds. Proc. of the 1st lnt'l Conf. on Rough Sets and Knowledge Technology. New York: Springer-Verlag, 2006. 592-597. 被引量:1
  • 9Silva JPM. The impact of branching heuristics in propositional satisfiability algorithms. In: Proc. of the 9th Portuguese Conf. on Artificial Intelligence. New York: Springer-Verlag, 1999.62-74. 被引量:1
  • 10Freeman JW. Improvements to propositional satisfiability search algorithms [Ph.D. Thesis]. Philadelphia: University of Pennsylvania, 1995. 被引量:1

同被引文献43

  • 1WUXia SUNJigui LINHai FENGShasha.Modal extension rule[J].Progress in Natural Science:Materials International,2005,15(6):550-558. 被引量:7
  • 2刘全,孙吉贵,崔志明.基于布尔剪枝的多值广义量词Tableau推理规则简化方法[J].计算机学报,2005,28(9):1514-1518. 被引量:5
  • 3Christoph W. SPASS-Version 0. 49[J]. Journal of Automated Reasoning, 1997, 18(2): 247-252. 被引量:1
  • 4Selman B, Kautz H. Knowledge compilation and theory approximation[J]. Journal of theACM, 1996, 43(2): 193- 224. 被引量:1
  • 5Cadoli M, Donini F M. A survey on knowledge compilation [J]. AICommunications, 1997, 10(3): 137-150. 被引量:1
  • 6Murray N V, Rosenthal E. Duality in knowledge compilation techniques [C] //LNCS 3488: Proc of the 15th Int Symp on Methodologies for Intelligent Systems. Berlin: Springer, 2005: 182-190. 被引量:1
  • 7Pipatsrisawat K, Darwiche A. New compilation languages based on structured decomposability [C] //Proe of the 23rd National Conf on Artificial Intelligence. Menlo Park, CA.- AAAI Press, 2008: 517-522. 被引量:1
  • 8Bryant R E. Symbolic Boolean manipulation with ordered binary decision diagrams [J]. ACM Computing Surveys, 1992, 24(3): 293- 318. 被引量:1
  • 9Marquis P. Knowledge compilation using theory prime implicates [C] //Proc of the 14th Int Joint Conf on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 1995: 837-843. 被引量:1
  • 10Darwiche A. Decomposable negation normal form [J]. Journal of the ACM, 2001, 48(4): 608-647. 被引量:1

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部