期刊文献+

改进权值计算的均值移动目标跟踪 被引量:2

Target tracking based on mean shift with improved weights
原文传递
导出
摘要 针对基于Bhattacharyya相似度的均值移动跟踪算法精度较差的问题,提出一种基于直方图交集思想的新型颜色分量加权方法,该方法利用参考模板与候选模板归一化颜色概率密度对应颜色分量的比值作为均值移动算法的加权系数。新权值计算方法在目标快速运动,有场景相似颜色干扰等情况下具有很好的适用能力,从而提高目标的跟踪精度。另外处理跟踪过程中,因摄像机抖动、光照变化等因素导致跟踪线索变化的情况,利用基于辅助模板的目标更新机制,有效地解决了目标短暂遮挡以及更新过程中的累积误差问题。通过多组对比实验结果可以看出,算法具有更强地抑制背景干扰以及特征自适应的能力,从而提高了均值移动跟踪算法的鲁棒性。 Aimed to solve the poor tracking accuracy problem of mean shift based on Bhattacharyya similarity, a novel weighting method is proposed based on the enhanced histogram intersection. The paper uses the ratio between the color components of the normalized color probability densities of the candidate model and that of the reference model as the weight coefficient. Results show that the new color weighting coefficient method has good adaptability under fast object moving or color similarity in scene, and the target tracking precision is enhanced effectively. In addition, a template updating method based on auxiliary model mechanism is used to solve the problems of camera vibration, illumination and object changing, therefore the cumulative error problem is also effectively alleviated. Through groups of contrast experiments, the new tracker shows its good adaptive ability and its robustness.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第7期1283-1288,共6页 Journal of Image and Graphics
基金 中国博士后科学基金项目(20100470588) 国家重点基础研究发展计划(973)基金项目(2009CB320804) 国家高技术研究发展计划(863)基金项目(2009AA01Z337,2008AA01Z303) 国家自然科学基金项目(60673188,U0735004) 浙江大学CAD&CD国家重点实验室开放基金项目(A1009)
关键词 复杂环境 均值移动 直方图交集 模板更新 complex environments mean shift histogram intersection model updating
  • 相关文献

参考文献1

二级参考文献9

  • 1彭宁嵩,杨杰,周大可,刘志.Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129. 被引量:23
  • 2张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 3LI Yuan, AI Hai-zhou, HUANG Chang, et al, Robust Head Tracking Based on a Multi-State Particle Filter [C]// 7th International Conference o Automatic Face and Gesture Recognition, [S.l.]: IEEE, 2006: 335-340. 被引量:1
  • 4Nummiaro Katja, Koller-meier Esther, Van Gool Luc. Object Tracking with an Adaptive Color-Based Particle Filter [C]// Proceedings of the 24th DAGM Symposium on Pattern Recognition. London, UK: Springer-Verlag, 2003:591-599. 被引量:1
  • 5Fukunaga Keinosuke, Hostetler Larry D. The estimation of the gradient of a density function, with applications in pattern recognition [J]. IEEE Transactions on Information Theory, 1975, 21(1): 32-40. 被引量:1
  • 6CHENG Yizong. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799. 被引量:1
  • 7Comaniciu Dorin, Ramesh Visvanathan. Mean shift and optimal prediction for efficient object tracking [C]// IEEE International Conference on Image Processing. Vancouver, BC, Canada: IEEE, 2000, 3: 70-733. 被引量:1
  • 8Collins Robert T. Mean-shift blob tracking through scale space [J]. IEEE Conference on Computer Vision and Pattern Recognition, 2003, 2(18/20): 234-240. 被引量:1
  • 9Comaniciu Dorin, Ramesh Visvanathan, Meer Peter. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1

共引文献2

同被引文献17

  • 1陈爱华,朱明,王艳华,薛陈.融合梯度特征的灰度目标跟踪[J].微电子学与计算机,2009,26(2):69-71. 被引量:4
  • 2叶佳,张建秋.基于mean-shift算法的目标跟踪方法[J].传感技术学报,2006,19(6):2621-2624. 被引量:3
  • 3宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 4Okumal K, Taleghanil A, Freitasl N D, et al, A boosted particle filter: multitarget detection and tracking [ M ]//Lecture Notes in Computer Science. Berlin : Springer 2004 : 28-39. 被引量:1
  • 5Kyriakides I, Morrell D, Antonia P S. Sequential Monte Carlo methods for tracking multiple targets with deterministic and sto- chastic constraints [ J ]. IEEE Transactions on Signal Processing, 2008, 56(3) : 937-948. 被引量:1
  • 6Cheng Y Z. Mean shift, mode seeking, and clustering [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799. 被引量:1
  • 7Comanicin D, Ramesh V, Meet P. Kernel-based object tracking [ J ]. IEEE Transactions on pattern analysis and machine intelli- gence, 2003, 25(5): 564-577. 被引量:1
  • 8Chen J J, An G C,Zhang S F, et al. A mean shift algorithm based on modified parzen window for small target tracking[ C ]// IEEE ICASSP. Texas, USA : IEEE ,2010 : 1166-1169. 被引量:1
  • 9Wang J Q, Yagi Y. Adaptive mean-shift tracking with auxiliary particles. [J]. IEEE Transactions on Systems, Man, and Cyber- netics, 2009, 39(6) : 1578-1589. 被引量:1
  • 10Swain M J, Ballard D H. Color indexing[ J]. International Jour- nal of Computer Vision, 1991, 7( 1 ) : 11-32. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部