期刊文献+

基于多特征信息和直方图相交的改进Meanshift算法

Improved Mean Shift Algorithm with Multi-cue Integration and Histogram Intersection
下载PDF
导出
摘要 针对Mean-Shift算法仅利用颜色信息并以Bhattacharya系数为相似性度量导致算法准确率较低的问题,提出一种结合颜色和纹理信息并以直方图交集为相似性度量的跟踪算法。首先用局部二元模式算子提取纹理信息,再以对数比加权直方图取代传统直方图构建目标和候选目标模型,然后根据场景自适应地综合两类特征并通过Mean-Shift算法获得目标的初略位置,最后以直方图交集作为相似性度量并用Powell方法求其极值作为目标在当前帧中位置的估计。实验表明,该算法不仅能增强跟踪的准确性,而且对光照弱、目标与背景颜色近似等情况也有较好的鲁棒性。 The mean shift tracker is commonly used in real-time target tracking.However,the original mean shift tracker employs only color feature and uses the Bhattacharya coefficient as similarity measure,resulting in low tracking accuracy.This paper proposed a novel tracking algorithm,which integrated color and texture features and employed histogram intersection and Powell's method to track.Firstly,texture feature was extracted by the Local Binary Pattern texture operator and integrated with color feature adaptively.Log-likelihood ratio histogram was proposed to represent objects instead of histogram.Then,the rough location of the target was obtained by the mean shift algorithm based on the two features.Finally,histogram intersection was defined as the similarity metric between the target model and candidates and iteratively maximized by Powell's method.Experimental results demonstrate the proposed method can track targets more accurately and fast.
作者 李晖宙
出处 《舰船电子工程》 2012年第10期38-41,46,共5页 Ship Electronic Engineering
关键词 目标跟踪 MEAN-SHIFT算法 多特征融合 直方图交集 Powell方法 target tracking Mean Shift multi-cue integration histogram intersection Powell's method
  • 相关文献

参考文献12

  • 1WANG Jun-qiu, Yasushi Yagi. Adaptive Mean-Shift Tracking with auxiliary Particles[J]. IEEE Transactions on System, Man, and Cybernetics, Part B Cybernetics, 2009,39 ( 6 ) : 1578- 1589. 被引量:1
  • 2CHEN Xiao-peng, ZHOU you-xue, HUANG Xiao-san, et al. A- daptive Bandwidth Mean Shift Object Tracking [C]//Proceed- ings of the 2008 IEEE Conference on Robotics, Automation and Mechatronics, 2008 : 1011-1017. 被引量:1
  • 3Leichter I, Lindenbaum M, Rivlin E. Mean Shift tracking with multiple reference color histograms[J]. Computer Vision and Image Understanding, 2010,114(3) : 400-408. 被引量:1
  • 4Swain M J, Ballard D H. Color indexing[J]. International Jour- nal of Computer Vision, 1991, ? (1) : 11-32. 被引量:1
  • 5AN Guo-cheng, ZHANG Feng-j un, DAI Guo-zhong. Mean Shift using novel weight computation and model update[C]//Pro- eeedings of the Z010 IEEE Conference on Acoustics, Speech,and Signal Processing, 2010 706-709. 被引量:1
  • 6WANG Jun-qiu, Yasushi Yagi. Integrating Shape and Color Features for Adaptive Real-time Object Traeking[J]. IEEE Transactions on Image Processing, 2008,17 (2) : 235-240. 被引量:1
  • 7LIU Hong,Yu Ze, ZHA Hong-bin, et al. Robust human track- ing based on multi-cue integration and mean-shift[J]. Pattern Recognition Letters, 2009,30 (9) : 827-837. 被引量:1
  • 8NING Ji-feng, ZHANG Lei, ZHANG D. Robust object tracking using joint color-texture histogram[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23 (7): 1245-1263. 被引量:1
  • 9Comaniciu D, RameshV, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2003,25 (5) : 564-575. 被引量:1
  • 10Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2002,24 (5) : 603-619. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部