期刊文献+

Mean-Shift跟踪算法中目标模型的自适应更新 被引量:23

Mean-Shift Tracking with Adaptive Model Update Mechanism
下载PDF
导出
摘要 针对Mean-shift跟踪算法中的模型更新问题,提出利用目标历史模型和当前匹配位置处得到的观测模型,对目标核函数直方图进行Kalman滤波,从而对目标模型进行及时更新。在滤波过程中,通过分析滤波残差动态,调整滤波方程中的各种参数。Bhattacharyya系数被用作模型更新的准则。该系统能够有效地处理遮挡、光照变化等干扰,避免了模型的过更新。大量视频序列测试的结果表明,在场景遮挡、光照变化等因素的影响下,算法能够对目标外观以及尺度的变化进行稳健、实时和有效的跟踪。 Considering the issue of model update within the Mean-shift framework, this paper proposes a model update method by using Kalman filters to estimate the object kernel-histogram from the previous and current object models. Filtering residuals are employed to adaptively tune all the parameters of Kalman filters. In addition, Bhattacharyya coefficient is used as a criterion for model update. Therefore, the tracker can avoid over-update. Experimental results show that the method keeps up with the object appearance and scale changes, and is robust under the influence of occlusion and illumination factors, etc.
出处 《数据采集与处理》 CSCD 北大核心 2005年第2期125-129,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(30170274l)资助项目 上海市科委人脸识别(03DZ14015)资助项目。
关键词 目标跟踪 Mean—shift 自适应Kalman滤波 模型更新 BHATTACHARYYA系数 object tracking Mean-shift adaptive Kalman filtering model update Bhattacharyya coefficient
  • 相关文献

参考文献9

  • 1Blake A, Curwen R, Zisserman A.A framework for spatio-temporal control in the tracking of visual contour[J].International Journal of Computer Vision, 1993, 11(2):127~145. 被引量:1
  • 2Peng Ningsong, Yang Jie, Chen J X.Kernel-bandwidth adaptation for tracking object changing in size[A].Campilho A and Kamel M Eds.Proceedings of Int Conf Image Analysis and Recognition[C].Berlin, Heidelberg: Springer-Verlag, 2004, 2:581~588. 被引量:1
  • 3Legters G,Young T.A mathematical model for computer image tracking[J].IEEE Trans Pattern Analysis Machine Intelligence, 1982, 4(6):583~594. 被引量:1
  • 4Nguyen H T, Worring M, Van den Boomagaard R.Occlusion robust adaptive template tracking[A].Werner B Ed.Proceedings of IEEE International Conference on Computer Vision[C].New York: Printing House, 2001, 1:678~683. 被引量:1
  • 5Comaniciu D, Ramesh V, Meer P.Kernel-based object tracking[J].IEEE Trans Pattern Analysis Machine Intelligence, 2003,25(5):564~575. 被引量:1
  • 6Yilmaz A, Shafique K, Shah M.Target tracking in airborne forward looking infrared imagery [J].Image and Vision Computing, 2003,21:623~635. 被引量:1
  • 7Collins R T.Mean-shift blob tracking through scale space[A].Danielle Martin Ed.Proceedings of IEEE Int Conf Computer Vision and Pattern Recognition[C].Baltimore: Victor Graphics, 2003, 2:234~240. 被引量:1
  • 8Fukanaga K, Hostetler L D.The estimation of the gradient of a density function, with applications in pattern recognition[J].IEEE Trans Information Theory, 1975,21(1):32~40. 被引量:1
  • 9Maybeck P.Stochastic models, estimation and control[M].New York: Academic Press, 1982. 被引量:1

同被引文献179

引证文献23

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部