期刊文献+

目标窗口尺寸自适应变化的Mean-Shift跟踪算法 被引量:7

Mean-Shift tracking algorithm with adaptive bandwidth of target
下载PDF
导出
摘要 传统的窗宽尺寸固定不变的Mean-Shift跟踪算法不能实时地适应目标尺寸大小的变化。将多尺度空间理论与Kalman滤波器相结合,利用Kalman滤波器对尺寸变化的目标面积比例进行预测,用多尺度空间理论中的目标信息量度量方法求出前后相邻两帧的目标特征信息比,将其作为Kalman滤波器的观察值对目标面积比例进行修正,然后与Mean-Shift算法结合起来对目标进行跟踪。实验结果表明,改进的跟踪算法对尺度逐渐变大和变小的目标都能连续自动地选择合适大小的跟踪窗口。 The traditional Mean-Shift tracking algorithm of the fixed window-size cannot be adapted to real-time goal of the changes in size. Multi-scale space theory was combined with Kalman filter. First, Kalman filter was introduced to predict the proportion of the target image area, and then this proportion was revised by the observation, which was the proportion of the information of the two adjacent target images using the measurement of the target amount of information in the muhscale space theory. Finally, it was implemented by the combination of the Mean-Shift tracking algorithm and Kalman filter to track targets. The improved algorithm can select the proper size of the tracking window in the scenarios that not only of increasing scale but of decreasing scale by the experimental results.
出处 《计算机应用》 CSCD 北大核心 2009年第12期3329-3331,3335,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60673190)
关键词 KALMAN滤波器 信息量度量 Mean—Shift算法 面积的变化比例 Kalman filter the amount of information measure Mean-Shift algorithm proportion of the target image area
  • 相关文献

参考文献3

二级参考文献32

  • 1彭宁嵩,杨杰,周大可,刘志.Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129. 被引量:23
  • 2王郑耀,程正兴,汤少杰.基于视觉特征的尺度空间信息量度量[J].中国图象图形学报,2005,10(7):922-928. 被引量:23
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4Lindeberg Tony. Scale-space: A framework for handling image structures at multiple scales [ A ]. In: Proceedings of the Conference European Organization for Nuclear Research School of Computing [ C ]. Egmond aan Zee, The Netherlands, 1996,9:8 ~ 21. 被引量:1
  • 5Lindeberg Tony. Scale-space for discrete signals [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(3) :234 ~254. 被引量:1
  • 6Lindeberg Tony, Romeny Harr. Linear scale-space [ A ]. In:Geometry-Driven Diffusion in Computer Vision [ C ], Dordrecht,Netherlands, Kluwer Academic Publishers, 1994:1 ~ 77. 被引量:1
  • 7Sporring Jon. The entropy of scale-space[ A ]. In: Proceedings of the 13th International Conference on Pattern Recognition[ C ], Vieuna,Austria, 1996,1:900 ~904. 被引量:1
  • 8Sporring Jon, Weickert Joachim. Information measures in scalespaces[ J]. IEEE Transactions on Information Theory, 1999,45 (3):1051 ~ 1058. 被引量:1
  • 9Marr David. Vision [ M ]. San Francisco: CA, USA, Freeman Publishers, 1982. 被引量:1
  • 10Shi Yiyu, Tsui Hung Tat. Scale space filtering by Fejer kernel[ A ].In: 1994 International Symposium on speech, Image processing and Neural Networks [ C ], HongKong, 1994:13 ~ 16. 被引量:1

共引文献58

同被引文献85

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部