期刊文献+

基于椭圆对数极坐标变换的尺度变化目标跟踪算法 被引量:2

Algorithm of scale-variant objects tracking based on ellipse log-polar transform
下载PDF
导出
摘要 针对传统对数极坐标变换局限于跟踪圆形或类圆形尺度变化目标这一问题,提出一种基于椭圆对数极坐标变换域下目标匹配的尺度变化目标跟踪算法。算法利用Mean Shift进行空间定位,确定目标的形心,通过椭圆对数极坐标变换域中目标和候选的最大相关匹配系数来确定目标的尺度参数。实验结果表明:该文算法在目标小形变和光照变化条件下,跟踪误差较小,尺度跟踪准确率更高,具有较好的鲁棒性。 To solve the problem of the traditional logpolar tracking method which could only catch up with circular and quasicircular objects with scale changing, we introduced ellipse log polar transform(LPT) to estimate the target's scale parameters within the framework of Mean Shift tracking. Experimental results demonstrate that the composite algorithm has lower track ing error and better tracking accuracy rate on the condition of small deformation and light in tensity changes. Comspoured with the traditional, it has a better robustness.
出处 《应用光学》 CAS CSCD 北大核心 2014年第1期65-70,共6页 Journal of Applied Optics
基金 国家自然科学基金(61175029) 陕西省自然科学基金(2011JM8015)
关键词 椭圆对数极坐标变换 尺度变化 目标跟踪 ellipse log-polar transform Mean Shift scale variant object tracking
  • 相关文献

参考文献10

二级参考文献47

共引文献178

同被引文献22

  • 1訾方,李言俊,张科,赵大炜.矩形非均匀采样算法和对数级坐标变换算法的比较分析[J].计算机应用,2007,27(7):1619-1622. 被引量:3
  • 2钱惠敏,茅耀斌,王执铨.自动选择跟踪窗尺度的Mean-Shift算法[J].中国图象图形学报,2007,12(2):245-249. 被引量:35
  • 3Wn Yi, Lira J, Yang M H. Online Object Tracking: A Benchmark [ C 1//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA : IEEE Press, 2013 : 2411-2418. 被引量:1
  • 4Shaul O, Aharon B H, Dan L, et al. Locally Orderless Tracking E C ~//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press ,2012 : 1940-1947. 被引量:1
  • 5Chenglong B,Wu Yi,Ling Haibin,et al. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient App- roach~C]//Proceedings of 2012 IEEE Conference on Com- puter Vision and Pattern Recognition. Washington D. C., USA :IEEE Press ,2012:1830-1837. 被引量:1
  • 6Thang B D,Nam V,Ge' erard M. Context Tracker : Explor- ing Supporters and Distracters in Unconstrained Environ- ments[Cl//Proeeedings of 2011 IEEE Conference on Com- puter Vision and Pattern Recognition. Washington D. C., USA : IEEE Press ,2011 : 1177-1184. 被引量:1
  • 7Sam H,Amir S, Philip H S T. Struck: Structured Output Tracking with Kernels [ C 1//Proceedings of IEEE Interna- tional Conference on Computer Vision. Washington D. C., USA ~ IEEE Press ,2011:263-270. 被引量:1
  • 8Yossi R, Carlo T, Leonidas J G. The Earth Mover' s Distance as a Metric for Image Retrieval I J ]. International Journal of Computer Vision,2000,40(2) :99-121. 被引量:1
  • 9Amit A,Ehud R,Ilan S. Robust Fragments-based TrackingUsing the Integral Histogram I C l//Proceedings of 2006 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2006: 798 -805. 被引量:1
  • 10Grabner H,Grabner M,Bischof H. Real-time Tracking via On-line Boosting [ C ]//Proceedings of British Machine Vision Conference. Bristol,UK: [ s. n. ~ ,2006:47-56. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部