期刊文献+

基于LEACH和压缩感知的无线传感器网络目标探测 被引量:10

Source Detection in Wireless Sensor Network by LEACH and Compressive Sensing
原文传递
导出
摘要 为了解决在无线传感器网络监测的区域内进行信号目标源探测的问题,提出了一种联合低功耗自适应集簇分层型协议(LEACH)算法和贝叶斯压缩感知(CS)的方法.LEACH算法对网络节点进行分簇并选择簇头,将簇内节点的信息集中在簇头上,同时仅通过簇头向汇聚节点传递信息,可减少向汇聚节点传输数据的节点数.汇聚节点利用贝叶斯CS算法可从来自簇头的少量数据中恢复出信号源.同时提出了一种阈值机制,以优化在数据量过少情况下CS算法的信号重构性能.仿真结果表明,所提算法能对目标进行准确探测,具有较好的性能. For study of the source detection areas monitored by wireless sensor network, an algorithm combining low energy adaptive clustering hierarchy(LEACH) algorithm and Bayesian compressive sensing (CS)is proposed. LEACH algorithm divides the sensors into some clusters and chooses the clusterheads. The information in the sensors is collected by the clusterheads. Only the clusterheads are allowed to transmit information to the fusion center. It reduces the number of sensors which send the information to the fusion center. The fusion center utilizes Bayesian CS to recover the source from a little measurement transmitted by clusterheads. At the same time, a threshold is set to optimize the performance of reconstruction when the data volume becomes little. Simulations show that the algorithm proposed can detect the source accurately, and obtain the good performance.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2011年第3期8-11,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家高技术研究发展计划项目(2009AA01Z262) 国家自然科学基金项目(60772021) 国家重大科技专项项目(2009ZX03006-006/-009) 高等学校博士学科点专项科研基金项目(20070013029) Korean Ministry of Knowledge Economy Project(IITA-2009-C1090-0902-0019)
关键词 贝叶斯压缩感知 低功耗自适应集簇分层型协议 算法 信号源探测 簇头 Bayesian compressive sensing low energy adaptive clustering hierarchy algorithm source detection clusterhead
  • 相关文献

参考文献6

  • 1Candes E,,Romberg J,Tao T.Robust uncertainty princi-ples:exact signal reconstruction from highly incompletefrequency information[].IEEE Trans on Inf Theory.2006 被引量:1
  • 2Quer G,Masiero R,Munaretto D,et al.On the interplaybetween routing and signal representation for compressivesensing in wireless sensor networks[].ITA.2009 被引量:1
  • 3Shihao Ji.Bayesian Compressive Sensing[].IEEE Transactions on Signal Processing.2008 被引量:1
  • 4D.L. Donoho.Compressed sensing[].IEEE Transactions on Information Theory.2006 被引量:1
  • 5Heinzelman WR,Chandrakasan A,Balakrishnan H.Energy-efficient communication protocol for wireless microsensor networks[].Proceedings of the rd Annual Hawaii International Conference on System Sciences.2000 被引量:1
  • 6Chen S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[].SIAM Journal on Scientific Computing.1999 被引量:1

同被引文献108

  • 1ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 2沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报,2006,17(7):1588-1600. 被引量:267
  • 3Gleichman S and Eldar Y C. Blind compressed sensing [J]. IEEE Transactions on Information Theory, 2011, 57(10): 6958-6975. 被引量:1
  • 4Candes E J and Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J]. Foundations of Computation Mathmatics, 2006, 6(2): 227-254. 被引量:1
  • 5Candes E J, Romberg J, and Terence T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 6Mallat S and Zhang Z. Matching pursuits with time- frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. 被引量:1
  • 7Tropp J A and Gilbert A. Signal recovery from partial information via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 8Sartipi M and Fletcher R. Energy-efficient data acquisition in wireless sensor networks using compressed sensing[C]. 2011 Data Compression Conference, Snowbird, UT, 2011: 223-232. 被引量:1
  • 9Peyre G. Best basis compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2613-2622. 被引量:1
  • 10Wei L and Namrata V. Exact reconstruction conditions for regularized modified basis pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2634-2640. 被引量:1

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部