期刊文献+

压缩感知和LEACH结合的水下传感器网络信息采集方案 被引量:6

Information Collection Scheme in Underwater Sensor Networks with Combined Compressed Sensing and LEACH
下载PDF
导出
摘要 由于水下传感器网络特殊的工作环境,节点能耗是其至关重要的问题。针对这一问题,本文提出一种LEACH和压缩感知相结合的水下传感器网络信息采集方案(CS_LEACH)。根据LEACH协议对网络节点分簇后,簇内节点可以以概率q决定是否参与感知数据,簇内感知到的数据加权叠加后,由簇头传输至Sink节点。在Sink节点,利用压缩感知重构算法进行信息重构,从而得到监测区域的信息图谱。仿真结果表明,与传统的LEACH协议相比,CS_LEACH方案在保证重构精度的前提下,大大节约了节点能量,延长了网络生存周期。 Due to the special applying environment, node energy consumption is a critical issue to underwater sensor networks. To solve this problem, an information collection scheme (CS_LEACH)for underwater sensor networks is proposed in this paper, which combines LEACH protocol with the new emerging compressed sensing theory. After the network nodes are clustered according to LEACH protocol,a node in some cluster will participate in the sensing process with a certain probability q. Then, all cluster heads send the weighted sum of the gathered data in each cluster to the Sink node. Sink node reconstructs the original information map of the concerned area using compressed sensing reconstruction algorithm. Simulation results show that under the premise of ensuring the reconstruction precision, the proposed CS_LEACH scheme greatly saves node energy and prolongs network life-time compared with the conventional LEACH protocol.
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第3期388-395,共8页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61001093) 山东省优秀中青年科学家科研奖励基金项目(BS2012DX001) 威海市科技发展计划项目(2010-3-96) 哈尔滨工业大学科研创新基金项目(HIT.NSRIF.2013136)
关键词 水下声学传感器网络 LEACH协议 压缩感知 能耗 underwater acoustic sensor network LEACH protocol compressed sensing energy consumption
  • 相关文献

参考文献25

  • 1Cui J H,Kong J,Gerla M,et al. The Challenges of Building Scalable Mobile Underwater Wireless Sensor Networks for Aquatic Applications [J]. IEEE Network,2006,20(3) :12-18. 被引量:1
  • 2Heidemann J, Ye W, Wills J, et al. Research Challenges and Applications for Underwater Sensor Networking [ C ]//Proceedings of the IEEE Wireless Communications and Networking Conference, Las Vegas, April 2006 : 228-235. 被引量:1
  • 3Ovaliadis K, Savage N, Kmlakaris V. Energy Efficiency in UnderwaterSensor Networks: A Research Review [ J ]. Journal of Engineering Science and Technology Review,2010,3( 1 ) :151-156. 被引量:1
  • 4Heinzelman W B ,Chandrakasan A P,Balakrishnan H. An Application- Specific Protocol Architecture for Wireless Microsensor Networks [ J ]. IEEE Transactions on Wireless Communications,2002,1 ( 4 ) : 660-670. 被引量:1
  • 5Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-Efficient Communication Protocol for Wireless Microsensor Networks [ C ]//Pro- ceedings of the Hawaii Intemalionat Conference on System Sciences, 2000:1-10. 被引量:1
  • 6李芳芳,王靖.一种基于LEACH协议的无线传感器网络路由算法[J].传感技术学报,2012,25(10):1445-1451. 被引量:20
  • 7杨伟伟,刘润杰,申金媛.一种基于LEACH的高效节能协议[J].传感技术学报,2010,23(8):1153-1157. 被引量:18
  • 8Huang C J, Chen Y J, Chen I Fan, et al. A Clustering Head Selection Algorithm for Underwater Sensor Networks [ C ]//Second International Conference on Future Generation Communication and Networking, 2008 : 21-24. 被引量:1
  • 9Anupama K R, Sasidharan A, Vadlamani S. A Location-Based Clustering Algorithm for Data Gathering in 3D Underwater Wireless Sensor Networks [ C ]//International Symposium on Telecommuni- cations, Aug. 2008:343-348. 被引量:1
  • 10Zheng J,Wang P, Li C, Mouftah H T. An Efficient Fauh-Prevention Clustering Protocol for Robust Underwater Sensor Networks [ C ]// Proc ICC ,2008:2802-2807. 被引量:1

二级参考文献112

共引文献754

同被引文献64

  • 1Zhang Y, Li J. Wavelet-Based Vibration Sensor Data Compression Technique for Civil Infrastructure Condition Monitoring [ J ]. Journal of Computing in Civil Engineering. 2006,20 (6) :390-399. 被引量:1
  • 2Zhang Y, Li J. Efficient Seismic Response Data Storage and Transmission Using ARX Model-Based Sensor Data Compression Algorithm[J]. Earthquake Engineering and Structural Dynamics. 2006,35 (6) :781-788. 被引量:1
  • 3Chintalapudi K K. Design of Wireless Sensor Network Based Structural Health Monitoring Systems [ D ]. Los Angeles : Univ of Southern California,2006. 被引量:1
  • 4Zhang Y F, Li J. Linear Predietor-Based Lossless Compression of Vibration Sensor Data: Systems Approach [ J]. ASCE Journal of Engineering Mechanies ,2007,133 (4) :431-441. 被引量:1
  • 5Ma J, Hussaini M Y. Extensions of Compressed Imaging: Flying Sensor, Coded Mask, and Fast Decoding [ J ]. IEEE T Instrum Meas,2011,60(9 ) :3128-3139. 被引量:1
  • 6Morlier J, Bettebghor D. Compressed Sensing Applied to Mode Shapes Reconstruction [ C ]//IMAC Conference and Exposition on Structural Dynamics. Jacksonville, USA ,2012. 被引量:1
  • 7Cortial J, Farhat C, Guibas L, et al. Compressed Sensing and Time- Parallel Reduced-Order Modeling for Structural Health Monitoring Using a DDDAS [ C ]//IEEE Int Conf Computational Science (ICCS) ) ,2007, Beijing, China. 1171 - 1179. 被引量:1
  • 8Huang Y, Beck J L, Wu S, et al. Robust Diagnostics for Bayesian Compressive Sensing Technique in Structural Health Monitoring [ J ]. Structural Health Monitoring (SHM) ,2011,1 (2) : 103 - 110. 被引量:1
  • 9Yang Y C, Satish N. Structural Damage Identification Via a Combination of Blind Feature Extraction and Sparse Representation Classification [ EB/OL]. Mechanical Systems and Signal Processing, Available online 31 October 2013. 被引量:1
  • 10Candes E, TAO T. Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies [ J ]. IEEE Transactions on Information Theory ,2006,52 ( 12 ) :5406-5425. 被引量:1

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部