期刊文献+

基于LU分解的稀疏目标定位算法 被引量:8

Localization Algorithm of Sparse Targets Based on LU-decomposition
下载PDF
导出
摘要 针对基于orth的稀疏目标定位算法中orth预处理会影响原信号的稀疏性的问题,该文提出一种基于LU分解的稀疏目标定位算法。该算法通过网格化感知区域把目标定位问题转化为压缩感知问题,并利用LU分解法对观测字典进行分解得到新的观测字典。该观测字典有效地满足了约束等距性条件,同时对观测值的预处理过程不影响原信号的稀疏性,从而有效地保证了算法的重建性能,提升了算法的定位精度。实验结果表明,基于LU分解的稀疏目标定位算法的性能远优于基于orth的稀疏目标定位算法,目标的定位精度得到了较大地提升。 For the localization algorithm of sparse targets based on orth, the orth preprocessing would affect the sparsity of original signals. A novel localization algorithm of sparse targets based on LU-decomposition is proposed. It translates target localization into compressive sensing issue by using gridding method for sensing area, and then utilizes LU-decomposition to obtain a new observation dictionary, which satisfies effectively the restricted isometry property. Moreover, the sparsity of original signal can not be affected during the preprocessing of data observed, which will ensure the reconstruction performance and improve the localization accuracy. The experimental results show that, compared with the localization algorithm of sparse targets based on orth, the localization algorithm proposed have a much better performance, and the target localization accuracy is excellently improved.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2234-2239,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61077079)资助课题
关键词 无线传感器网络 目标定位 压缩感知 LU分解 Wireless Sensor Network (WSN) Target localization Compressed Sensing (CS) LU-decomposition
  • 相关文献

参考文献16

  • 1Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 2Candes E and Plan Y. A probabilistic and RIP less theory of compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(11): 7235-7254. 被引量:1
  • 3金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:77
  • 4Malioutov D, Cetin M, and Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. 被引量:1
  • 5Cevher V, Duarte M F, and Baraniuk R C. Distributed target localization via spatial sparsity[C]. Proceedings of the European Signal Processing Conference, Lausanne, Switzerland, Aug. 25-29, 2008: 25-29. 被引量:1
  • 6赵春晖,许云龙.能量约束贝叶斯压缩感知检测算法[J].通信学报,2012,33(10):1-6. 被引量:9
  • 7Chen Feng, Valaee S, and Tan Zhen-hui. Multiple target localization using compressive sensing[C]. IEEE Global Communications Conference, Honolulu, HI, USA, Nov. 30-Dec. 4, 2009: 1-6. 被引量:1
  • 8Chen Feng, Wain Sy Anthea Au, Valaee S, et al.. Received signal strength based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983-1993. 被引量:1
  • 9Wain Sy Anthea Au, Chen Feng, Valaee S, et al.. Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device[J]. IEEE Transactions on Mobile Computing, 2012, DOI: 10.1109/ TMC.2012.175. 被引量:1
  • 10IEEE standard online resource provided by IEEE 802.15 WPAN[S]. http://www.ieee802.org/15/pub/TG4.html, 2009. 被引量:1

二级参考文献48

共引文献123

同被引文献75

  • 1卜长江,罗跃生.矩阵论[M].哈尔滨:哈尔滨工程大学出版社,2008:83-85. 被引量:2
  • 2MI Q, STANKOVIC J A, STOLERU R. Practical and secure locali- zation and key distribution for wireless sensor networks [ J]. Ad Hoc Networks, 2012, 10(6): 946-961. 被引量:1
  • 3VELIMIROVIC A S, DJORDJEVIC G L, VELIMIROVIC M M, et al. Fuzzy Ring-Overlapping Range-Free (FRORF) localization method for wireless sensor networks [ J]. Computer Communica- tions, 2012, 35(13) : 1590 - 1600. 被引量:1
  • 4BU K, XIAO Q, SUN Z, et al. Toward collinearity-aware and con- flict-friendly localization for wireless sensor networks [ J]. Computer Communications, 2012, 35(13) : 1549 - 1560. 被引量:1
  • 5BAHL P, PADMANABHAN V N. RADAR: an in-building RF- based user location and tracking system [ C]// INFOCOM 2000: Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway: IEEE, 2000: 775 - 784. 被引量:1
  • 6SAVVIDES A, HAN C C, STRIVASTAVA M B. Dynamic fine- grained localization in Ad-Hoc networks of sensors [ C]// Proceed- ings of the 7th Annual International Conference on Mobile Compu- ting and Networking. New York: ACM, 2001 : 166 - 179. 被引量:1
  • 7OU C H, HE W L. Path planning algorithm for mobile anchor-based localization in wireless sensor networks [ J]. IEEE Sensors Journal, 2013, 13(2): 466 -475. 被引量:1
  • 8NICULESCU D, NATH B. DV based positioning in Ad Hoc net- works [ J]. Journal of Telecommunication Systems, 2003, 22( 1/2/ 3/4) : 267 -280. 被引量:1
  • 9WU G, WANG S, WANG B, et al. A novel range-free localization based on regulated neighborhood distance for wireless Ad Hoc and sensor networks [J]. Computer Networks, 2012, 56(16) : 3581 - 3593. 被引量:1
  • 10HE T, HUANG C, BLUM B M, et al. Range-free localization schemes for large scale sensor networks [ C]// Proceedings of the 9th Annual International Conference on Mobile Computing and Net- working. New York: AGM, 2003:81-95. 被引量:1

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部