期刊文献+

基于小波分析和神经网络的异步电机早期故障诊断 被引量:2

Early Fault Diagnosis in Asynchronous Motors Based on Wavelet Analysis and Neural Network
下载PDF
导出
摘要 针对异步电机早期定子故障诊断,根据电机定子故障的特点,采用小波变换极大模分析法检测故障信号突变点的位置;利用小波包各个频带能量的变化完成能量特征提取,采用BP神经网络故障识别算法识别电机的各种运行状态来诊断电机早期故障.仿真实验结果表明,小波分析和神经网络算法的结合能有效定位并检测异步电机的早期故障. Aiming at early fault diagnosis to asynchronous motor,a detection fault method of fault signal mutating position is proposed by wavelet analysis,the energy features are extracted based on the change of band energy by means of the wavelet packet for training BP neural network,and the motor running states are discriminated to diagnose all kinds of early motor faults by fault identification algorithm of BP neural network.The simulation results show that the combining wavelet analysis with neural network algorithm can efficiently locate and detect early fault of the asynchronous motor.
作者 满红 贾世杰
出处 《大连交通大学学报》 CAS 2011年第3期80-83,共4页 Journal of Dalian Jiaotong University
基金 国家科技部中小企业创新基金资助项目(09C26222123243)
关键词 小波分析 故障诊断 BP神经网络 异步电机 wavelet analysis fault detection BP neural network asynchronous motor
  • 相关文献

参考文献8

  • 1朱启兵..基于小波理论的非平稳信号特征提取与智能诊断方法研究[D].东北大学,2005:
  • 2冯志鹏,李学军,褚福磊.基于平稳小波包分解的水轮机非平稳振动信号希尔伯特谱分析[J].中国电机工程学报,2006,26(12):79-84. 被引量:22
  • 3陈基明编著..小波分析基础[M].上海:上海大学出版社,2002:148.
  • 4杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:166
  • 5熊富强,张航.基于小波-神经网络的汽轮机转子故障诊断[J].自动化技术与应用,2007,26(12):1-2. 被引量:10
  • 6LIN J,QU L S.Feature extraction based on model wavelet and its application for mechanical fault diagnosis[J].Journal of Sound and Vibration,2000,234(1):135-148. 被引量:1
  • 7ZHAO XIAODONG,TANG XINLIANG.Fault diagnosis of asynchronous induction motor based on BP neural net-work[C].2010 international conference on measuring technology and mechatronics automation,2010:13-15. 被引量:1
  • 8胡昌华等编著..基于MATLAB的系统分析与设计 4 小波分析[M].西安:西安电子科技大学出版社,1999:326.

二级参考文献19

  • 1冯志鹏,褚福磊.基于Hilbert-Huang变换的水轮机非平稳压力脉动信号分析[J].中国电机工程学报,2005,25(10):111-115. 被引量:21
  • 2徐涛,王祁.基于小波包神经网络的传感器故障诊断方法[J].传感技术学报,2006,19(4):1060-1064. 被引量:10
  • 3Hammond J,White P.The analysis of non-stationary signals using time-frequency methods[J].Journal of Sound and Vibration,1996,190:419-447. 被引量:1
  • 4Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London,Series A,1998,454:903-995. 被引量:1
  • 5Huang N E,Wu M C,Long S R,et al.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J].Proceedings of the Royal Society of London,Series A,2003,459:2317-2345. 被引量:1
  • 6Wu Z,Huang N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Proceedings of the Royal Society of London,Series A,2004,460:1597-1611. 被引量:1
  • 7Flandrin P,Rilling G,Goncalves P.Empirical mode decomposition as a filter bank[J].IEEE Signal Processing Letters,2004,11(2):112-114. 被引量:1
  • 8Olhede S,Walden A T.The Hilbert spectrum via wavelet projections[J].Proceedings of the Royal Society of London,Series A,2004,460:955-975. 被引量:1
  • 9Olhede S,Walden A T.A generalized demodulation approach to time-frequency projections for multicomponent signals[J].Proceedings of the Royal Society of London,Series A,2005,461:2159-2179. 被引量:1
  • 10Walden A T,Contreras Cristan A.The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events[J].Proceedings of the Royal Society of London,SeriesA,1998,454:2243-2266. 被引量:1

共引文献193

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部