期刊文献+

基于小波包神经网络的传感器故障诊断方法 被引量:10

Methodology for Sensor Fault Diagnosis Based on Wavelet Package and Neural Network
下载PDF
导出
摘要 讨论了小波包神经网络在传感器故障诊断中的应用问题。文中提出了将小波包分解提取各个节点特征能量与RBF神经网络进行模式分类的传感器故障诊断方法。通过三层小波包分解得到各个节点的分解系数,通过一定的削减算法使得故障的瞬态信号的特征得到加强,再根据重构的时域信号计算各个节点对应的能量,作为特征向量训练RBF神经网络。通过各种故障模式特征数据的训练,RBF网络具有了传感器故障诊断的功能。最后,通过工业锅炉流量传感器数据对训练之后的RBF神经网络进行检验,验证了这种方法的实用性和有效性。 Sensor fault diagnosis based on wavelet package and neural network is discussed. The method with wavelet package to get the pattern energy of each node and RBF neural network to classify the sensor mode is proposed for sensor fault diagnosis. After the decomposition of wavelet package, the coefficients of each node are achieved. With some filter algorithm, the instantaneous signal with fault character is strengthened. As the pattern sample, the energy of each node is calculated after the reconstruction with the coefficients above to train the RBF neural network. Then the RBF network possesses the capability for sensor fault diagnosis, which is tested with data from a flow sensor of an industrial boiler. Finally, the applicability and effectiveness of the proposed methodology is illustrated by diagnostic results.
作者 徐涛 王祁
出处 《传感技术学报》 CAS CSCD 北大核心 2006年第4期1060-1064,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金支持(60572010/F010104)
关键词 小波包 神经网络 传感器 故障诊断 wavelet package neural network sensor fault diagnosis
  • 相关文献

参考文献10

  • 1Ma J, Zhang J Q, Yan Y. Wavelet Transform based Sensor Validation. IEE Colloquium (Digest) [C] // Chatham. Kent ME4 4TB UK. June 1999: 55-58. 被引量:1
  • 2Zhang J Q, Yan Y . A Self-Validating Differential-Pressure Flow Sensor. Conference Record-IEEE Instrumentation and Measurement Technology Conference [C]//Chatham, Kent ME4 4TB UK. May 2001 : 1227-1230. 被引量:1
  • 3龚瑞昆.离散小波变换在传感器故障诊断中的应用[J].仪器仪表学报,2001,22(z1):237-239. 被引量:13
  • 4李文军,张洪坤,程秀生.基于小波和神经网络的传感器故障诊断[J].吉林大学学报(工学版),2004,34(3):491-495. 被引量:17
  • 5王志鹏,马孝江.基于RBF网络的旋转机械故障诊断方法[J].大连理工大学学报,2001,41(6):696-700. 被引量:10
  • 6Wichehauser M V. Lectures on Wavelet Packet Algorithms[J]. Information Theory. 1992, 38: 713-718. 被引量:1
  • 7Gou T H, Nurre J. Sensor Detection and Recovery by Neural Network[C]//IEEE International Joint Conference on Neural Networks [C]. Seattle, WA USA. July 1991, 221-226. 被引量:1
  • 8Moody J, Darken C. Learning with Localized Receptive Fields[C] // Proceedings Connectionist Models Summer School, D Jourelzky, G Hinton, and T Sejnow Ski ( Eds. ), Carnegie Mellon University, Morgan Kaufmann Publishers, 1988. 被引量:1
  • 9谷蔌隆嗣 蔌原将文 山口亨.人工神经网络与模糊信号处理[M].北京:科学出版社,2003.79-137. 被引量:3
  • 10Nounou Mohamed N, Bakshi Bhavik R. On-line Multiscale Filtering of Random and Gross Errors Without Process Models[J]. ALCHE Journal, 1999(45): 1041-1055. 被引量:1

二级参考文献16

  • 1张炜,张优云,战仁军,张玉祥.旋转机械故障诊断中的神经网络改进算法研究[J].振动工程学报,1996,9(1):31-37. 被引量:13
  • 2百木万博.机械振动讲演集[M].郑州:机械工业部郑州机械研究所,1983.. 被引量:1
  • 3[4]Hlawatsch F et al..Linear and quadratic time-frequency signal representations.IEEE SP Magazine,April 1992:21~56. 被引量:1
  • 4[5]Daubechies I.The wavelet transform.time-frequency localization and signal analysis.IEEE Trans.IT.1990,36(5):961~1005. 被引量:1
  • 5王伟,人工神经网络——入门与应用,1995年 被引量:1
  • 6王文贤,线性代数及其应用,1993年 被引量:1
  • 7Chen S,Int J Control,1989年,50卷,5期,1873页 被引量:1
  • 8百木万博,机械振动讲演集,1983年 被引量:1
  • 9JIN J, SHI J. Feature-prewrving data compression of stamping tonnage information using wavelets[J]. Technometrics,1999,41(4):327-339. 被引量:1
  • 10AKANSU A N, HADDAD R A. Multiresolution Signal Decomposition: Transforms, Subbands, Wavelets[M]. New York: Academic, 1992. 被引量:1

共引文献38

同被引文献75

引证文献10

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部