期刊文献+

基于改进KPCA的语音特征提取方法 被引量:3

Speech Feature Extraction Method based on Improved KPCA
下载PDF
导出
摘要 语音特征提取问题取决于参数。针对特征参数识别准确性,通过核主成分分析方法应用于语音特征提取中。但核主成分分析方法的计算过于复杂,不利于提高系统实时性。为提高语音识别系统的鲁棒性和增强实时性,提出基于K-均值聚类的核主成分分析方法。通过K-均值聚类的方法对每个语音信号的语音帧进行聚类,采用聚类的中心代表类的特征,再用核主成分分析方法进行特征提取,不但减少了存储空间和计算的复杂度,而且通过把原始特征向量向低维子空间投影,达到降噪和去冗余的效果。仿真结果证明:所提方法在相似识别率的情况下提高了识别速度,能满足语音识别的实时性要求,并在噪声环境下具有较好的鲁棒性。 Kernel principal component analysis method has been applied widely in speech feature extraction at present,and it is helpful for improving robust of speech recognition system,but its computation is too complicated,which is the disadvantage of enhancing system real-time performance.Focusing on the computation drawbacks of the method,a new kernel principal component analysis method based on K-means clustering is proposed.In the new method,all the frames of speech signal is divide into a given amount of clusters by K-means clustering,the clustering center represent features of the clusters,and then the features were extracted by kernel principal component analysis.The new method not only reduces storage and computational complexity,but also maps the original eigenvector to the low dimension space which has effects of de-noise and eliminating tedious information.Simulations show the proposed method improves recognition speed and meets the needs of real-time of speech recognition at the similar recognition rate,and it has better robust under noisy environment.
出处 《计算机仿真》 CSCD 北大核心 2011年第6期393-396,共4页 Computer Simulation
关键词 核主成分分析 特征提取 语音识别 Kernel principal component analysis Feature extraction Speech recognition
  • 相关文献

参考文献6

  • 1陈迪,何静媛,李战明.一种基于子带处理的PAC说话人识别方法研究[J].计算机仿真,2008,25(3):306-308. 被引量:1
  • 2T Takiguchi and Y Ariki. Robust Feature Extraction using Kernel PCA[J]. In Int. Conf. on Acoustics, Speech and Signal Processing, May 2006, (1) :509 -512. 被引量:1
  • 3Min - Seok Kim, IL - Ho Yang and Ha - Jin Yu. Robust Speaker Identification using Greedy Kernel PCA [ C ]. 20th IEEE International Conference on Tools with Artificial Intelligence, 2008,105 (2) :143 - 146. 被引量:1
  • 4Yohei Takeuchi, Seiichi Ozawa, Shigeo Abe. An Efficient Incremental Kernel Principal Component Analysis for Online Feature Selection[ C ]. Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007. 被引量:1
  • 5T J Chin and D Suter. Improving the Speed of Kernel PCA on Large Scale Datasets [ C ]. Video and Signal Based Surveillance, 2006. AVSS '06. IEEE International Conference on, Nov. 2006. 1-6,. 被引量:1
  • 6边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283. 被引量:143

二级参考文献10

  • 1A E Rosenberg, C H Lee and F K Soong.Cepstral Channel Normalization Techniques for HMM - based Speaker Verification[J]. ICSLP, 1994. 1835 - 1838. 被引量:1
  • 2O Viikki and K Laurila. Noise Robust HMM - based Speech Recognition Using Segmental Cepstral Feature vector Normalization [ J ]. in ESCA NATO Workshop on Robust Speech Recognition for Unknown Communication Channels. Pont - a - Mousson, France 1997. 107 - 101. 被引量:1
  • 3S F Boll. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE Trans. on Acoustic, Speech, Signal Processing, ASSP-33, 1979, 27..113-120. 被引量:1
  • 4M Bcrouti, R Schwartz, M J akhoul. Enhancement of speech corrupted by additive noise[ C]. Proceedings of the IEEE Conference on Acoustics. Speech. and Signal Processing, April 1979. 208 - 211. 被引量:1
  • 5S Y Moon and J N Hwang. Noisy speech recognition via wavelet coefficient enhancement [ C ]. in Proc. IEEE 26th Asilomar Conf. Signals, Syst. , Comput. , Monterey, CA, Oct. 1992. 1086- 1090. 被引量:1
  • 6J Allen. How do humans process and recognize speech [ J ]. IEEE Trans, on SAP, ,1994, 2(4) :567 -576. 被引量:1
  • 7S Ikbal, H Misra and H bourland. Phase Autocorrelation (PAC) derived robust speech features [ C ]. in Proc. of ICASSP - 03, HongKong ,Apr. 2003, Ⅱ - 133 - Ⅱ - 136. 被引量:1
  • 8S Ikbal, H Hermansky and H Bourlard. Nonlinear Spectral Transformation for Robust Speech Recognition [ C ]. in proc. of IEEE ASRU 2003 workshop,2003. 被引量:1
  • 9R I Damper, J E Higglns. Improving speaker identification in noise by subband processing and decision fusion [ J ]. Pattern Recognition Letters, September 2003, 24(13) :2167 -2173. 被引量:1
  • 10蒋文建,韦岗.多数据流子带噪声语音识别方法[J].计算机工程与应用,2001,37(19):52-54. 被引量:1

共引文献142

同被引文献23

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部