期刊文献+

考虑空间相关性的数据空间特征提取方法 被引量:1

A Spatial Feature Extraction Method Considering Spatial Correlation of Data
下载PDF
导出
摘要 针对具有空间分布特性的时空数据,首先考虑数据的空间相关性对数据进行空间系统抽样,形成灾害数据空间分布样本;然后考虑样本数据的时间维度,运用粗糙集数据约简方法提取数据的空间特征。空间抽样方法能保证抽样精度、提高抽样效率;基于样本数据的约简技术能在保证数据主要传达信息不丢失的前提下对数据进行有效压缩、极大降低数据量,是解决海洋灾害数据监测花费巨大、数据分析繁杂的一种客观方法。最后,以某浅滩某次海洋灾害时空数据进行仿真,验证了数据简约方法的优良性。 According to the spatial distribution characteristics, the disaster data can be sampled with spatial sys- tematic sampling considering the spatial relevance of data firstly, to form the disaster sample data. Secondly, spatial features were extracted with data reduction teleology based on rough set from the disaster sample data considering the time dimension of data. Spatial sampling ensures the efficiency and precision of sampling. And the data reduction technology based on sampling can not only retain the main information of disaster data, but compress the data effectu- ally and greatly reducing the data quantity, so combination of the two methods forms an new objective method that can solve image quality problems such as non - fluency and in coherence in visualization of disaster with large data. Computer simulation based on some disaster of a shoal verified the good property of the method mentioned in paper.
出处 《计算机仿真》 CSCD 北大核心 2014年第12期425-428,433,共5页 Computer Simulation
基金 国家自然科学基金项目(61272098) 上海海洋大学首届人才计划(海燕计划:B-5003-11-0056)
关键词 时空数据 空间特征 空间相关性 抽样 数据约简 Spatio - temporal data Spatial features Spatial relevance Sample Data reduction
  • 相关文献

参考文献10

二级参考文献63

  • 1闫德勤,王杨.基于关联矩阵的属性约简算法[J].计算机工程与应用,2005,41(20):181-182. 被引量:7
  • 2BergerA.The improved iterative scaling algorithm: A gentle introduction.http://citeseer.nj.nec.com/31826.html,1997. 被引量:1
  • 3F Takens. On the numerical determination of the dimension of an attractor[ C]. In: Rand D Young L S editors. Dynamical Systems and Turbulence. Warwick, 1980, Lecture Notes in Mathematics. Spring - Verlag, 1981, 898:366 - 381. 被引量:1
  • 4R Mane. On the dimension of the compact invariant sets of certain nonlinear maps[ C]. In: Rand D, Young L S editors. Dynamical Systems and Turbulence. Warwick, 1981,898 : 230. 被引量:1
  • 5A M Fraser, H L Swinney. Independent coordinates for strange attractors from time series [ J ]. Phys. Rev. A ( S1094 - 1662 ), 1986,33: 1134-1140. 被引量:1
  • 6H D I Abarbanel, etc. The analysis of observed chaotic data in physical systems[ J]. Rev Mod Phys, 1993,65:1331 - 1392. 被引量:1
  • 7Li Junhong,Cui Peiling.Improved kernel fisher discriminant analysis for fault diagnosis.Expert Systems with Applica tions,2009,36:1423-1432. 被引量:1
  • 8Yang J,Frangi A F,Zhang D,Jin Z.KPCA plus LDA,A complete kernel Fisher discriminant framework for feature extraetion and recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244. 被引量:1
  • 9Sergios Theodorridis,Konstantinos Koutroumbas.Pattern Recognition.3rd Edition.Beijing:Publishing House of Electronic Industry,2006. 被引量:1
  • 10Qing Tao,Chu Dejun,Wang Jue.Recursive support vector machines for dimensionality reduction.IEEE Transactions on Neural Networks,2008,19(1):189-193. 被引量:1

共引文献79

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部