期刊文献+

基于SVM遥感图像矿化信息提取试验 被引量:4

Testing for Extracting Mineralization Information from Remote Sensing ImageBased on Support Vector Machines
下载PDF
导出
摘要 在讨论核函数的选择算法及优化的基础上,提出了一种将支持向量机(SVM)算法应用于遥感矿化信息提取的方法。并以TM遥感数据为试验样本,进行假彩色合成,将合成图像的RGB值作为训练样本的特征向量,应用核函数选择算法和人为选择核函数方法,采用SVM算法对样本进行分类。试验表明选用径向基核函数所得的分类效果最好。认为对遥感影像作预处理后采用RGB值作为特征向量,应用支持向量机算法进行遥感矿化信息提取的方法能够获得较好的识别效果;应用LOO估算选择的核函数模型能够较好地逼近最佳值。 Based on the selection algorithm and corresponding optimization of the kernel function, we put forward a new approach for extracting mineralization information with Support Vector Machine(SVM) applied into remote sensing image in this paper. We synthesize false color using the TM remote sensing data as the test sample, and with the RGB value of the synthetic image as characteristic vector of train samples, with kernel function selection algorithm and man-selected kernel function method, the samples is classified through the SVM algorithm. The test indicated that the radial primary kernel function is the best classification method. It is considered that good recognition effect can be gained for extracting mineralization information with Support Vector Machine(SVM) applied into remote sensing image with the RGB value as the characteristic vector after pre-processing the remote sensing images. The kernel function model selected by LOO estimation can approach the best value satisfactorily.
出处 《矿业研究与开发》 CAS 2004年第5期63-65,共3页 Mining Research and Development
基金 "十.五"科技攻关计划项目(2001BA609A-04)
关键词 支持向量机 矿化信息 遥感 图像 核函数选择 Support Vector Machine, Mineralization information, Remote sensing, image, Selection of kernel function
  • 相关文献

参考文献10

  • 1Vapnik V N. The Nature of Statistical Learning Theory[M]. NewYork :Springer Verlag,1995. 被引量:1
  • 2边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283. 被引量:143
  • 3Fabio Roli, Giorgio Fumera, Support Vector Machines for Remote-Sensing Image Classification, Dept.of Electronic Eng., University of Cagliari, Piazza d'Armi,09123,Cagliari, Italy,http://www.diee.unica.it. 被引量:1
  • 4骆剑承,周成虎,梁怡,马江洪.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55. 被引量:107
  • 5沈培华,等.遥感图像分类中三种分类算法应用[A].2002遥感科技论坛.北京:中国宇航出版社,2002. 被引量:1
  • 6Burgers J C .A tutorial on support vector machines for pattern recognition, Microsoft rsearch, Data Mining and Knowledge Discovery[M]. 1998,2:121~167. 被引量:1
  • 7Steve R Gunn, J S kandola,Structural Modelling with Sparse Kernels, Image, Speech and Electronics and Computer Science University of Southampton[J],U.K, 12 MARCH 2001. 被引量:1
  • 8Edgar e Osuna, Robert Freund and Federico Girosi.Support Vector Machines: Training and Applications[J]. C.B.C.L Paper,1997,(144). 被引量:1
  • 9Joachims T. Making large-scale support vector machine learning practical. In Advances in Kernel Methods: Support Vector Learning[M]. B. Sch lkopf, C.J.C. Burges, 1998. 被引量:1
  • 10LOOMS. A leave-one-out model selection software based on BSVM, http://www.csie.ntu.edu.tw/~cjliin/looms. 被引量:1

共引文献248

同被引文献74

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部