期刊文献+

基于流形正则的块增量距离尺度学习算法

Chunk Incremental Distance Metric Learning Algorithm Based on Manifold Regularization
下载PDF
导出
摘要 在实时应用中,观测样本通常以数据块的形式依次达到,传统的批量距离算法难以进行学习.本文提出一种新颖的利用成对约束关系进行学习的块增量距离尺度算法.首先给出块增量学习的一般模型,并通过扩展约束集克服其容易"过拟合"的缺陷;然后引入流形正则项使得学习过程中数据块的局部邻域结构得以保持.实验结果表明,本文算法学习的距离尺度在测试精度、计算开销上优于现有的增量距离算法,并且在存储开销方面显著优于批量距离算法. In many real-time applications,observed samples always arrive in the form of chunks stream,traditional batch distance metric algorithms can hardly work well in such scenarios.This paper proposes a novel semi-supervised chunk incremental metric learning algorithm on the basis of the pairwise constraints.One general model is given to learn metric incrementally on the arriving chunks at first with its limitation of over-fitting overcame by utilizing extended constraint sets.Then,a manifold regularization term is used to keep locality adjacency structure of chunks during metric learning.Experimental results indicate superiorities of our algorithm,which obtains better accuracy and lower computation costs than existing incremental metric learning algorithms,and needs much less storage costs than batch ones.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第5期1131-1135,共5页 Acta Electronica Sinica
基金 教育部人文社会科学研究青年基金(No.10YJCZH153) 西南财经大学"211工程"三期青年教师成长项目(No.211QN09028)
关键词 距离尺度学习 半监督 块增量学习 流形正则 distance metric learning semi-supervised chunk incremental learning manifold regularization
  • 相关文献

参考文献15

  • 1He Xiaofei, Niyogi P. Locality preserving projections []. Advances in Neural Information Processing Systems [C]. Cambridge: MIT Press,2003.153 - 160. 被引量:1
  • 2刘中华,周静波,陈燚,金忠.距离保持投影非线性降维技术的可视化与分类[J].电子学报,2009,37(8):1820-1825. 被引量:5
  • 3Liu Yang, Rong Jin. Distance Metric Learning: A Comprehensive Survey [R]. Department of Computer Science and Engi- neering,Michigan State University, 2006. 被引量:1
  • 4Goldberger J, Hinton G, Salakhutdinov R. Neighbor-hood components analysis [A]. Advances in Neural information Process- ing System [C]. Cambridge: MIT Press,2004.513 - 520. 被引量:1
  • 5Weinberger K, Blitzer J, Saul L. Distance metric learning for large margin nearest neighbor classifi-cation[A ]. Advances in Neural information Processing System [C]. Cambridge: MIT Press, 2006.1473 - 1480. 被引量:1
  • 6Bar-Hillel A,Hertz T,Shental N,et al. Learning a Mahalanobis metric from equivalence conslraints [ J ]. Journal of Machine Learning Research,2005,6(6) : 937 - 965. 被引量:1
  • 7Xiang Shiming, Nie Feiping, Zhang Changshui. Learning a Ma- halanobis distance metric for data clustering and classification [J].Pattern Recognition, 2008,41 (12) : 3600 - 3612. 被引量:1
  • 8Baghshah M S, Shourald S B. Semi-supervised Metric Learning using Pairwise Conslraints [ A 1. Proc of IJCAI' 09 E C ]. San Francisco: Morgan Kaufmann Publishers,2009.1217 - 1222. 被引量:1
  • 9Yeung D Y, Chang H. A kernel approach for semi-supervised metric learning [ J ]. IEEE Transactions on Neural Networks, 2007,18(1): 141 - 149. 被引量:1
  • 10Davis J V, Kulis B, et al. Information theoretic metric learning [A].Proc of ICML'07[C] .Corvalis: Omni Press,2007.209 - 216. 被引量:1

二级参考文献15

  • 1邵超,黄厚宽,赵连伟.P-ISOMAP:一种新的对邻域大小不甚敏感的数据可视化算法[J].电子学报,2006,34(8):1497-1501. 被引量:4
  • 2邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 3ST Roweis, LK Saul. Nonlinear dimensionality reduction by locall linear embedding [ J ]. Science, 2000, 290(5500) : 2323 - 2326. 被引量:1
  • 4JB Tenenbaum, V de Silva, JC langford. A global georaetric framework for nonlinear dimensionality reduction[ J ]. Science, 2000,290(22) : 2319 - 2332. 被引量:1
  • 5R C T Lee, J R Slagle, H Blum. A triangulation method for the sequential mapping of points from n-space to two-sapce[ J]. IEEE Trans Computers, 1977,26(3) :288 - 299. 被引量:1
  • 6Li Yang. Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 (9) : 1243 - 1246. 被引量:1
  • 7M Bemstein, V de Silva, J C Langford, et al. Graph approximations to geodesics on embedded manifolds[R]. Department of Psychology,Stanford University, Tech Rep,2000. 被引量:1
  • 8M Balasubramanian, E Shwartz, J Tenenbaum, et al. The ISOMAP algorithm and topological stability[J]. Science,2002, 295(5552) : 7a. 被引量:1
  • 9Miguel A. Carreira-Perpinan, Richard S. Zemel. Proximity graphs for clustering and manifold learning[ A]. Saul L K, Weiss Y, Bottou L. Advances in Neural Information Processing Systems 17[C]. Vancouver MIT Press,2004,225 -232. 被引量:1
  • 10Camastra R. Data dimensionality estimation methods: a survey. Pattern Recognition, 2003,36: 2945 - 2954. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部