期刊文献+

一种新的特征提取方法 被引量:4

Feature Extraction Based on Relief-F Algorithm and PCA Transform
下载PDF
导出
摘要 针对影像分类识别中,属性特征过多不但会造成维数灾难,而且会影响分类精度的问题,该文采用基于Relief-F算法的主成分分析(PCA)变换特征提取方法解决特征降维问题。首先采用Relief-F算法进行特征选择,剔除无效特征;然后进行PCA变换减少特征之间的相关性,降低特征维数。定量分析与实验结果表明:Relief-F算法进行特征选择,能有效提高分类精度;进行PCA变换后,进一步降低了特征的维度;Relief-F算法与PCA变换相结合能实现较好的实验效果。 In image classification and recognition, too many attributes can cause dimension disaster and affect the classification accuracy. In order to solve the problem of feature dimension in image classification, this paper uses the method of feature extraction based on Relief-F algorithm and PCA transform. Firstly, eliminate invalid features using the method of feature selection based on Relief-F algorithm. Then, reduce the correlation between the features by PCA transform in order to reduce feature dimensions. Experimental results show that the Relief-F algorithm can effectively improve the classification accuracy and the PCA transform can further reduce the feature dimensions.
机构地区 武汉大学
出处 《遥感信息》 CSCD 北大核心 2016年第2期104-108,共5页 Remote Sensing Information
基金 国家科技支撑计划(2012BAJ15B04) 国家自然科学基金(41071270)
关键词 Relief-F算法 PCA变换 特征选择 特征提取 分类精度 Relief-F algorithm PCA transform feature selection feature extraction classification accuracy
  • 相关文献

参考文献11

  • 1孙继祥.现代模式识别[M].长沙:国防科技大学出版社,2002. 被引量:4
  • 2SUN Z H,GEORGE B, RONALD M. Object detection using feature subset selection[J]. Pattern Recognition, 2004,37 (11) ..2165-2176. 被引量:1
  • 3LANGLEY P. Selection of relevant features in machine learning[C]. Proc of the AAAI Fall Symposium on Relevance. New Orleans, 1994 : 1-5. 被引量:1
  • 4PADOVAN B. A Prototype for an agent based secure electronic marketplace including reputation tracking mechanisms [C]. Proceedings of the 34th Annual Hawaii International Conference on System Science. Hawaii, USA: [s. n. ],2002. 被引量:1
  • 5AZZEDIN F, MAHESWARAN M. Integrating trust into grid resource management systems [C]. Proceedings of the International Conference on Parallel Processing. Los Alamitos, CA, USA : IEEE Computer Society Press, 2002 .. 47- 54. 被引量:1
  • 6刘小明,尹建伟,冯志林,董金祥.正交化近邻关系保持的降维及分类算法[J].中国图象图形学报,2009,14(7):1319-1326. 被引量:2
  • 7LI Y. Distance-preserving projection of highdimensional data for nonlinear dimensionality reduction [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,2004,26(9) ..1243-1246. 被引量:1
  • 8刘中华,周静波,陈燚,金忠.距离保持投影非线性降维技术的可视化与分类[J].电子学报,2009,37(8):1820-1825. 被引量:5
  • 9KENJI K, RENDELL A L. The feature selection problem., traditional methods and a new algorithm[C]. Proceedings of the National Conference on Artificial Intelligence,1992:129-134. 被引量:1
  • 10KONONENKO I. Estimating attributes: analysis and extensions of RELIEF [C]. Machine Learning: ECML-94. Springer Berlin Heidelberg, 1994 .. 171-182. 被引量:1

二级参考文献39

  • 1邵超,黄厚宽,赵连伟.P-ISOMAP:一种新的对邻域大小不甚敏感的数据可视化算法[J].电子学报,2006,34(8):1497-1501. 被引量:4
  • 2邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 3Tanenbaum J B,Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290 (12):2319-2323. 被引量:1
  • 4Roweis S T,Saul L K.Nonlinear dimensionality rnduction by locally linear embedding[J].Science,2000.290(12):2323-2326. 被引量:1
  • 5Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15 (6):1373-1396. 被引量:1
  • 6Yin J W,LiuXM,Feng Z L,et al.A local tangent space alignment based transductive classification algorithm[A].In:Lecture Notes in Computer Science:Artificial Neural Networks in Pattern Recognition[C],Ulm,Germany; Springer,2006:93-106. 被引量:1
  • 7Liu X M,Yin J W,Feng Z L,ctal.Incremental manifold learning via tangent space alignment[A].In:Lecture Notes in Computer Science:Artificial Neural Networks in Pattern Recognition[C],Ulm Germany ; Springer,2006:107-121. 被引量:1
  • 8Zhang Z,Zha H.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal on Scientific Computing,2006.26(1):313-338. 被引量:1
  • 9He X,Cai D,Yon S C,et al.Neighborhood preserving embedding[A].In:Proceedings of the Tenth IEEE International Conference on Computer Vision[C],Beijing,China,2005:1208-1213. 被引量:1
  • 10He X,Niyogi P.Locality preserving projections[A].In:Vancouver and Whistler (Eds),Advances in Neural Information Processing Systems[C],Cambridge,MA,USA:MIT press,2003. 被引量:1

共引文献50

同被引文献54

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部