期刊文献+

基于流形正则化的在线半监督极限学习机 被引量:6

Online Semi-Supervised Extreme Learning Machine Based on Manifold Regularization
下载PDF
导出
摘要 在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-ELM的近似算法OSSELM(buffer).在Abalone数据集上的实验显示,OSS-ELM(buffer)在线学习的累计时间与所处理的样本个数呈线性关系,同时,9个公共数据集上的实验表明,OSS-ELM(buffer)的泛化能力与SS-ELM的泛化能力的相对偏差在1%以下.这些实验结果说明,OSS-ELM(buffer)不仅解决了内存问题,还在基本保持SS-ELM泛化能力的基础上大幅度提高了在线学习速度,可以有效应用于在线半监督学习当中. In this paper,with the help of the rules of block matrix multiplication,an online semi-supervised extreme learning machine(OSS-ELM)was proposed according to semi-supervised extreme learning machine(SS-ELM)based on manifold regularization.By the analysis of the manifoldregularization term of the objective function of SS-ELM,a kind of approximation algorithm of OSS-ELM named OSS-ELM(buffer)was proposed to avoid running out of memory in the process of online learning.The linear relationship between the sample number and the cumulative running time of the OSS-ELM(buffer)was revealed in the experiments using Abalone and the relative deviation of the generalization ability of the OSS-ELM and the SS-ELM is less than 1%in 9public data sets,which show that the OSS-ELM(buffer)not only solves the problem of limited memory,but also improves the speed of online learning while keeping the generalization ability of SS-ELM.This proves that the OSS-ELM(buffer)can be effectively applied to online semi-supervised learning.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1153-1158,1167,共7页 Journal of Shanghai Jiaotong University
基金 2014年度公益性行业(气象)科研专项(GYHY201406004) 天津市面上基金项目(14JCYBJC21800)资助
关键词 极限学习机 半监督学习 在线学习 流形正则化 extreme learning machine(ELM) semi-supervised learning online learning manifold regularization
  • 相关文献

参考文献14

  • 1Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: A new learning scheme of feedforward neu- ral networks [ C]//Neural Networks, Proceedings of 2004 IEEE International Joint Conference on. Buda- pest : IEEE, 2004 : 985-990. 被引量:1
  • 2Huang G B, Zhou H, Ding X, etal. Extreme learn- ing machine for regression and multiclass classifica- tion[J]. Systems, Man, and Cybernetics, Part B: Cy- bernetics, IEEE Transactions on, 2012, 42 (2): 513- 529. 被引量:1
  • 3Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Ma- chine Learning and Cybernetics, 2011,2 (2) : 107-122. 被引量:1
  • 4Huang G B, Zhu Q Y, Slew C K. Extreme learning machine: theory and applications[J]. Neurocomput- ing,2006,70(1) :489-501. 被引量:1
  • 5Huang G B. An insight into extreme learning ma- :hines: Random neurons, random features and ker- nels[J]. Cognitive Computation, 2014,6 (3) : 376-390. 被引量:1
  • 6张弦,王宏力.局域极端学习机及其在状态在线监测中的应用[J].上海交通大学学报,2011,45(2):236-240. 被引量:12
  • 7刘学艺,李平,郜传厚.极限学习机的快速留一交叉验证算法[J].上海交通大学学报,2011,45(8):1140-1145. 被引量:75
  • 8张英堂,马超,李志宁,范红波.基于快速留一交叉验证的核极限学习机在线建模[J].上海交通大学学报,2014,48(5):641-646. 被引量:27
  • 9Huang G B, Song S J, Jatinder N D G, et al. Semi- supervised and unsupervised extreme learning ma- chines[J]. IEEE Transactions on Cybernetics, accept- ed paper,2014,44(12) :2405-2417. 被引量:1
  • 10Chapelle O, Schokopf B, Zien A. Semi-supervised learning[M]. London: The MIT Press, 2006. 被引量:1

二级参考文献52

  • 1Scholkopf B, Herbrich R, Smola A J. A generalized representer theorem [C] //Proe of the 14th Annual Conf on Learning Theory. Berlin: Springer, 2001:416-426. 被引量:1
  • 2Blake C, Keogh E, Merz C J. UCI repository of machine learning databases [OL]. [2008-11-10]. http://www. ics. uci. edu/-mlearn/ MLRepository. html. 被引量:1
  • 3Bays D. UCI KDD archive [OL].[2008-11-10]. http:// kdd. ies. uci. edu/. 被引量:1
  • 4Crammer K, Dekel O, Shalev-Shwartz S, et al. Online passive-aggressive algorithms [C] //Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press, 2006. 被引量:1
  • 5Kivinen J, Smola A J, Williamson R C. Online learning with kernels [J]. IEEE Trans on Signal Processing, 2004, 52(8):2165-2176. 被引量:1
  • 6Herbster M, Pontil M. Prediction on a graph with a perceptron [C] //Scholkopf B, Platt J C, Hoffman T, eds. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007:577-584. 被引量:1
  • 7Cheng L, Vishwanathan S V N, Schuurmans D, et al. Implicit online learning with kernels [C]//Scholkopf B, Platt J C, Hoffman T, eds. Advances in Neural Information Processing Systems 19. Cambridge, MA.. MIT Press, 2007 : 249-256. 被引量:1
  • 8McDonald R, Crammer K, Pereira F. Online large-margin training of dependency parsers [C] //Proc of the 43rd Annual Meeting of the Association for Computational Linguistics. Morristown, N J: ACL Press, 2005:91-98. 被引量:1
  • 9McDonald R. Discriminative sentence compression with soft syntactic constraints [C] //Proc of the llth Conf of the European Chapter of the Association for Computational Linguistics. Morristown, NJ: ACL Press, 2006:297-304. 被引量:1
  • 10Ciaramita M, Murdock V, Plachouras V. Online learning from click data for sponsored search [C] //Proc of the 17th Int Conf on World Wide Web. New York, NJ: ACM, 2008.. 227-236. 被引量:1

共引文献119

同被引文献47

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部