期刊文献+

改进椭球单元网络及其在故障诊断中的应用 被引量:2

Improve to Neural Networks with Ellipsoidal Activation Functions and Application in Fault Diagnosis
下载PDF
导出
摘要 椭球单元通过高斯分布逼近形成各模式类的决策区域,是一种非常适合于模式识别任务的前馈型人工神经网络模型。提出改进椭球单元神经网络的训练权重组,即采用多权重组,增强了椭球单元网络的抗干扰能力,提高了网络的故障诊断能力,并给出了权重选择方法。仿真和试验验证了该方法的正确性。 Neural Networks with Ellipsoidal Activation Functions closes in upon a decision making region by Gauss distribution for various patterns and is adapted to fault diagnosis well. It has the advantages, such as high precision in classifying, fast training rate and good rejective for unknown pattern. For improving the anti jamming performance, a multi weight is adopted between input neuron and ellipsoidal neuron in this paper. The selecting method of weights is also derived for network training. The simulation and experiments sustain the multi-weight method.
机构地区 东南大学 教育部
出处 《中国机械工程》 EI CAS CSCD 北大核心 1999年第8期890-893,共4页 China Mechanical Engineering
基金 国家自然科学基金
关键词 椭球单元 神经网络 故障诊断 噪声 ellipsoidal activation functions neural network fault diagnosis noise
  • 相关文献

参考文献3

二级参考文献2

共引文献4

同被引文献15

  • 1刘亚,侯霞,胡寿松.基于自适应AGBFN的不确定非线性系统的跟踪控制[J].控制理论与应用,2005,22(1):29-34. 被引量:1
  • 2周杰韩,吴波,左朝辉,杨叔子.改进决策树方法及其用于故障诊断知识获取[J].华中理工大学学报,1996,24(9):35-38. 被引量:3
  • 3Kavuri S N, Venkatasubramanian K. Representing bounded fault classes using neund networks with e11ipsoidal activation function[J].Computers in Chemical Engineering, 1993,17(2) :139 -163. 被引量:1
  • 4Duda R O, Hart P E. Pattern Classification and Scene Analysis[M].New York:Wiley , 1973. 被引量:1
  • 5Waston I, Marir F. Case-based reasoning: a review[J]. The Knowledge Engineering Review, 1994,9(4) :355 -381. 被引量:1
  • 6Lyons W B,Lewis E.Neural networks and pattern recognition techniques applied to optical fibre sensors[J].Trans Inst Meas Control,2000,22(2):385-404. 被引量:1
  • 7Javad H,Karim F,Majid A.A fuzzy hybrid learning algorithm for radial basis function neural network with application in human face recognition[J].Pattern Recognition,2003,36 (5):1187-1202. 被引量:1
  • 8Hecht-Nielsen R.Theory of the back-propagation neural network[C]∥Proceedings of the International Joint Conference on Neural Networks.Washington D C,USA:[s.n.]1989,1:593-605. 被引量:1
  • 9Huang G B,Saratchandran P,Sundararajan N.A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J].IEEE Trans on Neural Networks,2005,16(1):57-67. 被引量:1
  • 10Kavuri S N,Venkatasubramanian V.Using fuzzy clustering with ellipsoidal units in neural networks for robust fault classification[J].Computers and Chemical Engineering,1993,17(8):765-784. 被引量:1

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部