摘要
通过静态模型对动态模型的有效模拟,可以使电力系统静态模型和动态模型的鞍结分岔点(电压崩溃点)相同。在适当建模的情况下用静态模型求得系统的鞍结分岔点及其左特征向量,按此方向控制系统的行为可以最快地远离电压崩溃点。在特征值的求取上采用求解高阶稀疏对称阵特征对的Lanczos 法,实例证明用Lanczos 法求取特征值和特征向量比常用的逆迭代法精度高。
An effective sim ulation ofdynam icpowersystem m odels ism ade via staticpow ersystem m odel. Itm akesthestatic pow er system m odel and the dynam ic one have the sam e saddle node bifurcation point. Under the condition of suitable form ulation, the voltage collapse point and the left eigenvector ofthe dynam ic pow er system can be obtained by m eans of static pow er system m odel. The norm alvector to the bifurcation setis preferred to be used in optim um system controlnear bifurcation. The Lanczos m ethod is used to obtain its eigenvalue and eigenvector. The com putations show that Lanczos m ethod has a higherprecision and efficiency than the conventionalconverse iteration m ethod.
出处
《电力系统自动化》
EI
CSCD
北大核心
1999年第21期29-31,共3页
Automation of Electric Power Systems
基金
国家自然科学基金
关键词
电力系统
电压稳定
电压崩溃
最优控制
pow er system s voltage stability voltage collapse optim um control direction left eigenvector Lanczos m ethod