摘要
The relation between the Mg treatment and ferrite grain boundaries misorientation was investigated. The orientation imaging microscopy technique based on electron backscattered diffraction technique (EBSD) was used in this work. (t was found that the addition of 0.005 wt% Mg to the steel could evidently increase the ratio of acicular ferrite crystals appearing at large angles boundaries to each other, which was attributed to the nucleation of the second-phase particles by the Mg treatment. The FBSD techniques provide a power- ful method to characterize and quantify the ferrite grain boundaries misorientation, in order to relate it to toughness.
The relation between the Mg treatment and ferrite grain boundaries misorientation was investigated. The orientation imaging microscopy technique based on electron backscattered diffraction technique (EBSD) was used in this work. (t was found that the addition of 0.005 wt% Mg to the steel could evidently increase the ratio of acicular ferrite crystals appearing at large angles boundaries to each other, which was attributed to the nucleation of the second-phase particles by the Mg treatment. The FBSD techniques provide a power- ful method to characterize and quantify the ferrite grain boundaries misorientation, in order to relate it to toughness.