期刊文献+

从LiDAR数据中提取建筑物平面目标的新方法 被引量:8

New method for building planar objects extraction from LiDAR data
下载PDF
导出
摘要 提出一种从机载LiDAR点云数据中自动提取建筑物平面的方法。给出了基于边长约束的三角形生长算法对建筑物初始区域进行提取,针对提取出的建筑物脚点,利用自适应MeanShift方法在特征空间中对其进行聚类分析,并提取出平面目标,最后利用Alpha-Shape算法生成建筑物平面的轮廓线。通过实验证实了方法的有效性。 A new method for extracting building planar objects from LiDAR data base on adaptive Mean Shift algorithm is proposed,which consists of three parts:building region detection from filtered LiDAR data using a triangle group algorithm constrained by triangle side length;planar object extraction from building foot prints based on cluster analysis in feature space by adaptive Mean Shift;planar object contour generation using Alpha-Shape algorithm.Experiment is conducted to demonstrate the efficiency of the proposed method.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第10期5-7,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2006AA12Z101 No.2009AA12Z107~~
关键词 LIDAR数据 自适应Meanshift 聚类分析 建筑物 平面提取 LiDAR data adaptive Mean Shift cluster analysis building planar extraction
  • 相关文献

参考文献12

  • 1Vosselman G, Kessels P, Gorte B.The utilisation of airborne laser scanning for mapping[J].Intemational Journal of Applied Earth Observation and Geoinformation, 2005,6(3/4) : 177-186. 被引量:1
  • 2Filin S.Surface classification from airborne laser scanning data[J]. Computers and Geosciences, 2004,30(9/10) : 1033-1041. 被引量:1
  • 3Filin S.Surfaee clustering from airborne laser scanning data[J]. International Archives of Photogrammetry Remote Sewing and Spatial Information Sciences,2002,34(3) : 119-124. 被引量:1
  • 4Filin S,Pfeifer N.Segmentation of airborne laser scanning data using a slope adaptive neighborhood[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2006,60(2) : 71-80. 被引量:1
  • 5Biosca J, Lerma J.Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63 ( 1 ) : 84-98. 被引量:1
  • 6Comaniciu D, Ramesh V, Meer P.The variable bandwidth mean shift and data-driven scale selection[C]//Proceedings of the International Conference on Computer Vision, 2001 : 438-445. 被引量:1
  • 7何小诚,黄凯,谭毅华,田金文.基于Mean Shift的自适应尺度变化跟踪算法研究[J].微电子学与计算机,2010,27(4):69-74. 被引量:6
  • 8陈昌涛,朱勤,周圣毅,张家铭.核函数带宽自适应的Mean-Shift跟踪算法[J].计算机应用,2009,29(6):1680-1682. 被引量:9
  • 9贾静平,赵荣椿.使用Mean Shift进行自适应序列图像目标跟踪[J].计算机应用研究,2005,22(2):247-249. 被引量:5
  • 10Axelsson P.DEM generation from laser scanner data using adaptive TIN models[J].Intemafional Archives of Photogrammetry and Remote Sensing,2000,33(4) : 111-118. 被引量:1

二级参考文献17

  • 1陈爱华,朱明,王艳华,薛陈.融合梯度特征的灰度目标跟踪[J].微电子学与计算机,2009,26(2):69-71. 被引量:4
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3朱胜利,朱善安.核函数带宽自适应的Mean shift目标跟踪算法[J].光电工程,2006,33(8):11-16. 被引量:18
  • 4FUKUNAGA K, HOSTETLER L D. The estimation of the gradient of a density function, with applications in pattern recognition [ J]. IEEE Transactions on Information Theory, 1975, 21(1) : 32 - 40. 被引量:1
  • 5COMANICIU D, RAMESH V, MEER P. Real-time tracking of non- rigid objects using Mean-Shift [ C]// IEEE Computer Vision and Pattern Recognition. Hilton Head Island. Washington, DC: IEEE Press, 2000, 2:142 - 149. 被引量:1
  • 6COLLINS R T. Mean-Shift blob tracking through scale space [ C]// IEEE International Conference on Computer Vision and Pattern Recognition. Baltimore, Victor Graphics: IEEE Press, 2003: 234- 240. 被引量:1
  • 7LINDEBERG T. Feature detection with automatic scale selection [ J]. International Journal of Computer Vision, 1998, 30(2) : 79 - 116. 被引量:1
  • 8Comaniciu D, Ramesh V, Meer P. Real - Time tracking of non-rind objects using mean shift[C]//IEEE International Proceeding on Computer Vision and Pattern Recognition. Stonghton: Printing House, 2000(2):142- 149. 被引量:1
  • 9Comaniciu D, Ramesh V, Meer P. Kernel - based object tracking[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003, 25 (5) : 64 - 575. 被引量:1
  • 10Bradski G R. Real time face and object tracking as a component of a perceptual for user interface[ C]//IEEE Workshop on Applications of Computer Vision. Princeton, 1998:214- 219. 被引量:1

共引文献16

同被引文献72

引证文献8

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部