期刊文献+

一种自适应色彩融合的Mean-Shift跟踪算法 被引量:1

Mean-Shift tracking with adaptive combinational color features
下载PDF
导出
摘要 针对现有的Mean-Shift算法使用单纯的颜色特征不能适应光线及背景的变化,易受颜色相近物体干扰的问题,提出了自适应色彩融合方法来提高跟踪性能。对背景以极坐标的形式进行不等间隔采样,以融合后的目标直方图与背景直方图具有最小相似性为原则搜索色调与饱和度的最佳线性融合系数;考虑背景与目标的渐变,跟踪过程中在最佳融合系数的自适应调整邻域内调整融合系数;能够有效处理相似物体和颜色相近的大背景带来的干扰。视频序列跟踪结果表明,提出的方法能够实时、稳定地进行跟踪。 Consider the issue of simple color features which were not robust within the Mean-Shift framework, an adaptive tracking algorithm using combinational color features was proposed to improve tracking performance. The hypothesis was that the features best discriminate between object and background were also best for tracking the object. Several pixels were sampied in different intervals with polar coordinates in background. A best group of coefficients of hue and saturation was selected by minimizing the similarities between the sampled pixels of background and object. Consider the gradual changing appearance of both tracked object and scene background, a search in a coefficient neighborhood was performed to get the next most adaptive coefficients. Examples are presented that demonstrate that this real-time algorithm can avoid confusion which caused by similar object and background in tracking.
出处 《计算机应用研究》 CSCD 北大核心 2008年第9期2875-2877,2880,共4页 Application Research of Computers
基金 哈尔滨市留学回国人员基金资助项目(2004AFLXJ009)
关键词 目标跟踪 MEAN-SHIFT跟踪算法 自适应色彩融合 不等间隔采样 计算机视觉 object tracking Mean-Shift tracking algorithm adaptive combinational color features different interval sampling computer vision
  • 相关文献

参考文献11

  • 1FUKUNAGE K, HOSTETLER L D. The estimation of the gradient of a density function, with applications in pattern recognition [ J]. I EEE Yrans on Information Theory, 1975,21 ( 1 ) :32-40. 被引量:1
  • 2CHENG Y. Mean-Shift, mode seeking, and clustering[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17 (8) :790-799. 被引量:1
  • 3COMANICIU D, RAMESH V, MEER P. Real-time tracking of nonrigid objects using Mean-Shift [ J]. IEEE Computer Vision and Pattern Recognition ,2000,4 (2) : 142-149. 被引量:1
  • 4COMANICIU D, MEER P. Mean-Shift: a robust approach toward feature space analysis[ J], IEEE Trans on Pattern Analysis and Machine Intelligence ,2002,24 ( 5 ) :603- 619. 被引量:1
  • 5COLLINS R T, LIU Yan-xi , LEORDEANU M. Online selection of discriminative tracking features[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(10) :1631-1643. 被引量:1
  • 6文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 7COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(5) :564-575. 被引量:1
  • 8FASHING M, TOMASI C. Mean-Shift is a bound optimization[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005,27(3) : 471-474. 被引量:1
  • 9KAILATH T. The divergence and Bhattacharyya distance measures in signal selection[ J]. IEEE Trans on Communication Technology, 1967,15(1) : 52-60. 被引量:1
  • 10章毓晋.Color Image Segmentation Based on HSI Model[J].High Technology Letters,1998,4(1):30-33. 被引量:6

二级参考文献7

共引文献56

同被引文献10

  • 1KASS M, WITKIN A, TERZOPOULOS D. Snakes : active contour models[ J]. I ntemational Journal of Computer Vision, 1988, 1(4): 321-331. 被引量:1
  • 2ISARD M, BLAKE A. CONDENSATION-conditional density propagation for visual tracking [ J ]. International Journal of Computer Vision, 1998,29( 1 ) : 5-28. 被引量:1
  • 3CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours[J]. Intemational doumal of Computer Vision, 1997,22(1) :61-79. 被引量:1
  • 4OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on hamihon-jacobi formulations[J]. Journal of Computational Physics, 1988,79(1 ): 12-49. 被引量:1
  • 5CHANT F, VESE L A. Active contours without edges[J]. IEEE Trans on Image Processing, 2001,10(2): 266-277. 被引量:1
  • 6MANSOURI A R, KONRAD J. Multiple motion segmentation with level sets[J]. IEEE Trans on Image Processing, 2003,12(2): 201 - 220. 被引量:1
  • 7PARAGIOS N, DERICHE R. Geodesic active regions and level set methods for motion estimation and tracking [ J ]. Computer Vision and Image Understanding, 2005,97( 3 ) : 259-282. 被引量:1
  • 8BRESSON X, ESEDOGLU S, VANDERGHEYNST P, et al. Fast global minimization of the active contour/snake model [ J ]. Journal of Mathematical Imaging and Vision, 2007,28(2) :151-167. 被引量:1
  • 9COLLINS R, ZHOU Xu-hui, TEH S K. An open source tracking testbed and evaluation Web site [ C ]//IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. 2005. 被引量:1
  • 10裴继红,卢宗庆,谢维信.基于图像梯度场序列的双向GDIM光流计算方法[J].电子学报,2007,35(7):1301-1305. 被引量:3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部