期刊文献+

一类具有双同宿轨的Hamilton系统在n次多项式扰动下的Poincare分支 被引量:2

Poincare Bifurcation Problems of Hamiltonian System With Double-Homoclinic Orbit Under Polynomial Perturbation
原文传递
导出
摘要 本文利用G.S.Petrov的复域方法研究了一类具有双同宿的Hamilton系统(x=y,y=x-x^3)在n次多项式扰动下,周期闭轨族U_(h∈(0,+∞)Γ_h={(x,y)|H(x,y)=1/2 y^2-1/2 x^2+1/4 x^4=h>0}的Poincare分支现象,及同宿闭轨分支现象,证明了扰动系统在周期闭轨族U_(h∈(0,+∞)Γ_h附近分支出极限环个数的上界为n+1. A class of the Hamilton systems(x = y,y = x -x^3) with double-homoclinic orbit under degree n polynomial perturbation is considered in this paper.We apply G.S. Petrov's method to study the Poincare bifurcation problems of the familys of periodic close orbit∪_(h∈(0,+∞))Γ_h ={(x,y)|H(x,y) = 1/2y^2- 1/2x^2 + 1/4x^4 = h0} and the bifurcation problems of double-homoclinic orbit.It proves that the upper bound number of limit-cycles of the perturbed system is no more than n + 1 in the neighborhood of∪_(h∈(0 +∞))Γ_h.
出处 《数学进展》 CSCD 北大核心 2011年第2期187-192,共6页 Advances in Mathematics(China)
基金 天津市教委科技发展基金(No.20070405)
关键词 HAMILTON系统 Mel'nikov函数 POINCARE分支 同宿闭轨分支 Hamiltonian system Mel'nikov function Poincare bifurcation double-homoclinic orbit bifurcation
  • 相关文献

参考文献8

二级参考文献8

  • 1.[D].,. 被引量:1
  • 2NOVIKOV D, YAKOVENKO S. Simple exponential estimate for the number of real zeros of complete Abelian integrals [J]. Ann Inst Fourier, Grenoble, 1995, 45: 897--927. 被引量:1
  • 3Li Chengzhi,Li Weigu,Llibre J and Zhang Zhifen.Bifurcation of limit cycles from quadratic isochronous centers.Preprint,1999. 被引量:1
  • 4Li Chengzhi,Li Weigu,Llibre J and Zhang Zhifen.Linear estimation of the number of zeros of Abelian Integrals for some cubic isochronous centers.Preprint,1999. 被引量:1
  • 5Horozov E and Iliev I D,Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians.Preprint,Sofia University,1997. 被引量:1
  • 6Horozov E and Iliev I D.On the number of limit cycles in perturbations of quadratic Hamiltonian systems.Proc.London Math.Soc.,1994,69: 198-224. 被引量:1
  • 7Novikov D and Yakovenko S.Simple exponential estimate for the number of real zeros of complete Abelian integrals.Ann.Inst.Fourier,Grenoble,1995,45: 897-927. 被引量:1
  • 8Petrov G S.Number of zeros of complete elliptic integrals.Funct.Anal.Appl.1988,18: 148-149. 被引量:1

共引文献36

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部