摘要
本文利用G.S.Petrov的复域方法研究了一类具有双同宿的Hamilton系统(x=y,y=x-x^3)在n次多项式扰动下,周期闭轨族U_(h∈(0,+∞)Γ_h={(x,y)|H(x,y)=1/2 y^2-1/2 x^2+1/4 x^4=h>0}的Poincare分支现象,及同宿闭轨分支现象,证明了扰动系统在周期闭轨族U_(h∈(0,+∞)Γ_h附近分支出极限环个数的上界为n+1.
A class of the Hamilton systems(x = y,y = x -x^3) with double-homoclinic orbit under degree n polynomial perturbation is considered in this paper.We apply G.S. Petrov's method to study the Poincare bifurcation problems of the familys of periodic close orbit∪_(h∈(0,+∞))Γ_h ={(x,y)|H(x,y) = 1/2y^2- 1/2x^2 + 1/4x^4 = h0} and the bifurcation problems of double-homoclinic orbit.It proves that the upper bound number of limit-cycles of the perturbed system is no more than n + 1 in the neighborhood of∪_(h∈(0 +∞))Γ_h.
出处
《数学进展》
CSCD
北大核心
2011年第2期187-192,共6页
Advances in Mathematics(China)
基金
天津市教委科技发展基金(No.20070405)