期刊文献+

双曲线边界二次系统单中心环域的Poincaré分支 被引量:3

Poincaré bifurcation for quadratic system with a bound of hyperbola and a single center
下载PDF
导出
摘要 对一类以双曲线为边界的二次系统单中心环域的Poincaré分支问题,首次采用将Abel积分进行幂级数展开的方法,借助于Matlab编程计算,证明了在它的中心环域内可以分支出位置具有任意性的2个极限环.这种方法简便易行,更适用于高次多项式系统. Aiming at the problem of Poincaré bifurcation for the quadratic system with a bound of hyperbola and a single center, the method of the power series expansion for Abelian integral by Matlab program is proposed for the first time. It is proved that there are at least two limit cycles produced from its center region. Moreover, these two limit cycles are with arbitrary location. The method is feasible, it is more suitable for higher order polynomial systems.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2005年第2期298-302,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(10471014) 大连大学科技发展基金资助项目.
关键词 POINCARE分支 二次系统 环域 曲线边界 Abel积分 Matlab 幂级数展开 多项式系统 分支问题 编程计算 双曲线 极限环 任意性 hyperbola periodic region Poincaré bifurcation power series expansion limit cycle
  • 相关文献

参考文献14

二级参考文献6

共引文献11

同被引文献17

  • 1邵仪,赵育林.一类双中心平面二次系统的Abel积分零点个数[J].数学学报(中文版),2007,50(2):451-460. 被引量:5
  • 2Arnold V I. Loss of stability of self-oscilation close to resonce and versal deformations of equivariant vector fields[J].Funet Anal Appl, 1977, 11:1-10. 被引量:1
  • 3Varchenko A N. Estimate of the number of zeros of an Abelian integrabls depending on a parameter and limit cycles[J]. Funct Anal Appl, 1984, 18:98-108. 被引量:1
  • 4Pretrov G S. The Chebysehev property of elliptic integrals[J].Funct Anal Appl, 1988, 22: 72-73. 被引量:1
  • 5Novklov D, Yakovenko S. Simple exponential estimate for the number of real zeros of complete Abelian integrals [J].Ann Inst Fourier, 1995, 45: 897-927. 被引量:1
  • 6Li B, Zhang Z. A note on a result of G S Petrov about the weakended 16th Hilbert problem[J]. J Math Anal Appl, 1995, 190:489-516. 被引量:1
  • 7Gavrilov L. Nonoscillation of elliptic integrals related to cubic polynomials with symmetry of order three[J]. Bull Lond Math Soc, 1998, 30: 267-273. 被引量:1
  • 8Horozov E, Iliev I D. Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians[J]. Nonlinearity, 1998, 11:1521-1537. 被引量:1
  • 9Zhao Y, Zhang Z. Linear estimate of zeros of Abelian integrals for a kind of quartic Hamiltonian[J]. J Diff Eqns, 1999, 155: 73-88. 被引量:1
  • 10Ilive I D. On the limit cycles obtainable form polynomial perturbations of the Bogdanov-Takens Hamiltonian[J].Israel J Math, 2000, 155:269-284. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部