期刊文献+

基于改进C-V模型的脑组织提取算法 被引量:4

A Brain Tissue Extraction Algorithm Based on an Improved C-V Model
下载PDF
导出
摘要 通过对水平集算法C-V模型进行三方面改进,提出一种基于改进C-V模型的脑组织提取算法.首先,通过改进经典的距离函数,在保证准确度的同时,可以在很大程度上加快距离函数的收敛,提高分割速度.其次,改进了收敛结果的唯一性,使边缘停止在欲提取的目标类灰度上,用于去除脑脊液,使脑灰质、白质的提取更加准确.最后,提出了迭代收敛的动态结束条件.通过间隔帧的对比,改进了以往通过经验迭代次数作为结束条件,使分割效果与迭代时间达到较优.实验结果表明,该算法在脑组织的分割速度及准确性上有了较大提高,为医生确诊病情带来便利. Through improving C-V model in three aspects,a new rapid and accurate method for brain tissue extraction is presented.First,segmentation speed was enhanced through improving the classical distance matrix,with the distance function convergence improved compromising accuracy.Secondly,the improved method changed the uniqueness of classical results and made the evolving lines stop at the same level gray,so spinal fluid could be wiped off,and white/gray matter was extracted more accurately.Finally,a dynamic condition for ending iteration was proposed through comparing the interval frames.This improvement changed the flaw of setting evolving times to end iteration,and improved veracity and speed.Results indicated that these improvements make brain tissue extraction more rapid and accurate,and could be helpful to doctors in making confirmed diagnoses.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期489-492,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61001047)
关键词 脑组织分割 水平集 C-V模型 区域增长 活动轮廓模型 brain tissue segmentation level set C-V model regions merging active contour model
  • 相关文献

参考文献9

  • 1Perersen R C. Memory and MRI based hippocampal volumes in aging and AD[J]. Neurology, 2000,54(3):581 -587. 被引量:1
  • 2Prastawa M, Bulliu E, Moon N, et al. Automatic brain tumor segmentation by subject specific modification of aliapriors[J ]. Academic Radiology, 2003, 10 ( 12 ): 1341 - 1348. 被引量:1
  • 3Kapur T, Grimson W E, Wells W M, et al. Segmentation of brain tissue from magnetic resonance images [ J ]. Medical Image Analysis, 1996,1 (2) : 109 - 127. 被引量:1
  • 4Stella-Atkins M, Mackiewich B, WhittaU K. Fully automatic segmentation of the brain in MRI[J ]. IEEE Transactions on Medical Imaging, 1998,17 (1) : 98 - 107. 被引量:1
  • 5Marroquin W Y, Manjunath B. Edge flow: a technique for boundary detection and image segmentation [ J ]. IEEE Transactions on Image Processing, 2000,9(8) : 1375 - 1388. 被引量:1
  • 6Marroquin J, Vemuri B C, Botello S, et al. An accurate and efficient Bayesian method for automatic segmentation of brain MRI[J ]. IEEE Transactions on Medical Imaging, 2002,21 (8) :934 - 945. 被引量:1
  • 7MigelM J, Kabuka M R, Ibrahim M O. Multivariate statistical model for 313 image segmentation with application to medical images[J]. Journal of Digital Imaging, 2003, 16 (4) :365 - 377. 被引量:1
  • 8税午阳,周明全,耿国华.磁共振颅脑图像的脑组织自动获取方法[J].软件学报,2009,20(5):1139-1145. 被引量:15
  • 9Chan T, Vese L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001,10(2) :266 - 277. 被引量:1

二级参考文献2

共引文献14

同被引文献42

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部