期刊文献+

基于混合水平集的脑组织自动提取方法 被引量:2

Automatic brain extraction method based on hybrid level set model
下载PDF
导出
摘要 脑组织自动提取是脑功能分析中一个重要的预处理步骤,为提高脑组织提取的精度,提出了一种新的提取方法。该方法首先对磁共振成像(MRI)图像使用改进脑组织提取工具(BET)算法快速提取初始轮廓;其次对此初始轮廓进行数学形态学膨胀处理,得到初始感兴趣区域;然后在初始感兴趣区域中使用改进混合轮廓模型进行处理,得到新的轮廓线再进行膨胀处理得到新的区域,如此不断迭代;最后,该混合模型收敛,获得较精确脑组织轮廓。实验采用了7组来自IBSR网站的MRI数据序列,所提算法得到的平均错误划分比例为7.89%。实验结果表明所提方法对于脑组织提取精度的提高是有效和可行的。 Automatic extraction of brain is an important step in the preprocessing of brain internal analysis. To improve the extraction result, a modified Brain Extraction Tool (BET) and hybrid level set model based method for automatic brain extraction was proposed. The first step of the proposed method was obtaining rough brain boundary with the improved BET algorithm. Then the morphological expansion was operated on the rough brain boundary to initialize the Region of Interest (ROI) where the hybrid active contour model was defined to obtain a new contour. The ROI and the new contour were iteratively replaced until the accurate brain boundary was achieved. Seven Magnetic Resonance Imaging (MRI) volumes from Internet Brain Segmentation Repository (IBSR) website were used in the experiment. The proposed method achieved low average total misclassification ratio of 7.89%. The experimental results show the proposed method is effective and feasible.
出处 《计算机应用》 CSCD 北大核心 2013年第7期2014-2017,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61162023) 江西省自然科学基金资助项目(20114BAB211023)
关键词 脑组织提取 混合水平集 脑组织提取工具 brain extraction hybrid level set Brain Extraction Tool (BET)
  • 相关文献

参考文献13

  • 1HOHNE K, HANSON W. Interactive 3D segmentation of MRI and CT volumes using morphological operations [ J]. Journal of Computer Assisted Tomography, 1992, 16(2): 185-294. 被引量:1
  • 2SHATTUCK D W, LEAHY R M. BrainSuite: an automated cortical surface identification tool [J]. Medical Image Analysis, 2002,6(2): 129 -142. 被引量:1
  • 3HUANG A, ABUGHARBIEH R, RAM R, et al. MRI brain extrac- tion with combined expectation maximization and geodesic active contours [ C] // Proceedings of the 6th IEEE International Symposi- um on Signal Processing and Information Technology. Piscataway: IEEE Press, 2007:107 - 111. 被引量:1
  • 4SMITH S M. Fast robust automated brain extraction [ J]. Human Brain Mapping, 2002, 17(3) : 143 - 155. 被引量:1
  • 5ESKILDSEN S F, COUPE P, FONOV V, et al. BEAST: brain ex- traction based on nonlocal segmentation technique[ J]. Neuroimage, 2012, 59(3): 2362-2373. 被引量:1
  • 6SADANANTHAN S, ZHENG W, CHEE M, et al. Skull stripping using graph cuts [J]. Neuroimage, 2010, 49(1): 225 -239. 被引量:1
  • 7IGLESIAS J E, LIU C Y, THOMPSON P M. et al. Robust brain extraction across datasets and comparison with publicly available methods [ J]. IEEE Transactions on Medical Imaging, 2011, 30 (9): 1617-1634. 被引量:1
  • 8税午阳,周明全,耿国华.磁共振颅脑图像的脑组织自动获取方法[J].软件学报,2009,20(5):1139-1145. 被引量:15
  • 9贾迪,杨金柱,张一飞,赵大哲,于戈.序列磁共振颅脑影像的脑组织自动提取方法[J].仪器仪表学报,2011,32(8):1781-1787. 被引量:5
  • 10韩翀蛟,林相波,马慧超,李馨.基于层间先验知识从脑MRI图像中自动提取脑组织[J].生物医学工程与临床,2011,15(2):111-115. 被引量:4

二级参考文献32

共引文献23

同被引文献21

  • 1郑罡,王惠南.MULTI-PHASE ACTIVE CONTOUR MODEL FOR IMAGE SEGMENTATION BASED ON LEVEL SETS[J].Transactions of Nanjing University of Aeronautics and Astronautics,2006,23(2):132-137. 被引量:2
  • 2CHANT F, VESE L A. Active contours without edges [J]. 1EEE Transactions on Image Processing, 2001, 10(2):266-277. 被引量:1
  • 3El C M, KAO C Y, GORE J C, et al. Minimization of region-scala- ble fitting energy for inmge segmentation [ J]. IEEE Transactions on hnage Processing, 2008, 17(10) : 1940 - 1949. 被引量:1
  • 4CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [ J]. International Journal of Computer Vision, 1997, 22(1) : 61 - 79. 被引量:1
  • 5KIMMEL R, AMIR A, BRUCKSTEIN A M. Finding shortest paths on surfaces using level sets propagation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(6): 635- 640. 被引量:1
  • 6LI C, GORE J C, DAVATZ1KOS C. Multiplicative Intrinsic Compo- nent Optimization (M1CO) for MRI bias field estimation and tissue segmentation [ J]. Magnetic Resonance Imaging, 2014, 32(7) : 913 -923. 被引量:1
  • 7ZHAN(; K, ZHANG L, LAM K M, et al, A local active contour model for image segmentation with intensity inhomogeneity [ EB/ OL]. [ 2015-10-10]. https://arxiv, org/abs/1305. 7053. 被引量:1
  • 8WANG P, SUN K, CHEN Z. Local and global intensity information integrated geodesic model for image segmentation[ C]// Proceedings of the 2012 International Conference on Computer Science and Elec- tronics Engineering. Piscataway, NJ: [EEE, 2012, 2:129 - 132. 被引量:1
  • 9WANG L, HE L, MISHRA A, et al. Active contours driven by lo- cal Gaussian distribution fitting energy [J]. Signal PRocessing, 2009, 89(12) : 2435 -2447. 被引量:1
  • 10LIU S, PENG Y. A local region-based Chan-Vese model for image segmentation [ J]. Pattern Recognition, 2012, 45 (7) : 2769 - 2779. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部