期刊文献+

桃树叶片氮素含量的高光谱遥感监测 被引量:29

Predicting Nitrogen Concentrations in Fresh Peach Leaf from Hyper Spectral Remote Sensing
下载PDF
导出
摘要 通过设计试验分析用桃叶片反射率光谱预测其氮素含量,以及用光谱特征值与氮素含量建立相关模型的可能性。探讨采用光谱分析手段预测果树氮元素含量的精度及应用潜力。对桃树鲜叶的光谱反射率(Rλ)以及叶片全氮(TN)含量进行测定,并对氮素含量与Rλ及其多种变式数据(1/Rλ、logRλ、dRλ)的相关性进行分析,找出与氮素含量相关性最强的光谱数据形式;采用逐步回归法,对氮素和与其相关性最强的光谱数据形式进行回归分析,得到入选波长;利用入选的波长,进行基于最小误差平方和的回归建模。结果表明,可以由叶片的精细光谱特征,特别是利用dRλ作为因子,较好地反映出氮素含量,从而为进一步探讨利用高光谱遥感探测叶片化学组分提供参考。 The research was expected to evaluate the possibility and application potential of spectral analysison predicting nutritional element of fruit trees.The experiment was designed to determine whether nitrogen concentrations could be predicted from reflectance spectra of peach leaved in laboratory,and if so,whether the predictive spectral features could be correlated with nitrogen concentration of peach.Firstly,the author measured the specific reflectance(Rλ)of peach tree fresh leaves and the leaves total nitrogen(TN),andanalyzed the statistical correlation between each element content and Rλas well as its several transformations(1/Rλ、log Rλ、d Rλ)with in the wave length range from 400 nm to 1000 nm by factor analysis method,and the spectral reflectance variant of the highest correlation coefficient.Subsequently,we carried on the regression analysis of N content and the corresponding spectral reflectance variant of the highest correlation coefficient bystep wise regression method.The results showed that the correlation coefficient was the highest between the leaves TN and d Rλ.As a whole,the method of spectral analysis had some application potential to predict TNelement of peach trees.
出处 《中国农学通报》 CSCD 北大核心 2011年第4期85-90,共6页 Chinese Agricultural Science Bulletin
基金 国家"十一五"科技支撑项目"基于分布式土水肥管模型的资源高效利用系统研究与开发" "区域耕地保护监控与预警关键技术"(2006BAD10A06-03 2006BAB15B05) 北京市科技计划项目"北京市有机果品生产技术本土化集成化研究"(D0706003040191)
关键词 高光谱遥感 氮素 桃树叶片 high spectral remote sensing total nitrogen content fresh peach leaf
  • 相关文献

参考文献13

二级参考文献166

共引文献562

同被引文献473

引证文献29

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部