期刊文献+

连续投影算法融合信息熵选择霉变玉米高光谱特征波长 被引量:5

Hyperspectral Characteristic Wavelength Selection Method for Moldy Maize Based on Continuous Projection Algorithm Fusion Information Entropy
下载PDF
导出
摘要 运用高光谱技术鉴别玉米霉变等级时,因光谱波段数多、数据量大、信息冗余度高,使鉴别工作难度加大。为了减少数据量,获得最有利于鉴别的高光谱信息特征波长,本研究提出了一种连续投影算法(SPA)融合信息熵的特征波长选择方法。首先,对霉变玉米样本高光谱数据运用多元散射校正(MSC)进行光谱预处理以消除噪声,然后利用SPA对处理过的光谱进行波长初选,得到8个初选特征波长,再通过信息熵原理处理初选特征波长下的图像信息,获得最佳特征波长。结果表明,运用SPA融合信息熵法得到有利于霉变玉米鉴别的最佳波长为819 nm,提取该波长下霉变玉米图像的纹理特征后,采用Fisher判别分析(FDA)进行鉴别,6个等级霉变玉米的鉴别正确率高达98.6%,充分证明所给出的特征波长选择方法是有效的。本研究特征波长选择方法可为更好地运用高光谱技术鉴别玉米霉变等级提供指导。 Due to the number of spectral bands,large amount of data and high information redundancy,it is more difficult to identify the moldy maize samples using hyperspectral technology.In order to reduce the amount of data and obtain the most useful feature wavelengths for identifying the moldy maize samples using hyperspectral information,in this paper,a method of feature wavelength selection is proposed with the help of the continuous projections algorithm(SPA)coupled with the information entropy.Firstly,the hyperspectral data of moldy maize samples were subjected to pre-preprocess using multiplicative scatter correction(MSC)so as to eliminate signal noise.Then the continuous spectral algorithm was used to initially select a few wavelengths on the processed spectra to obtain eight primary feature wavelengths.And then the image information corresponding to the eight primary feature wavelengths was processed through the information entropy principle to obtain the best feature wavelength.The results show that the optimal wavelength for the identification of moldy corn is 819 nm by using the continuous projection algorithm fusion information entropy method.After extracting the texture features of the moldy maize images at the wavelength,Fisher Discriminant Analysis(FDA)was used to identify these moldy maize samples,and the correct discrimination rate of the 6 grades of moldy maize was up to 98.6%.This feature wavelength selection method can provide guidance for better use of hyperspectral techniques to identify the grades of moldy maize.
作者 殷勇 王光辉 YIN Yong;WANG Guanghui(College of Food and Bioengineering,Henan University of Science and Technology,Luoyang,Henan 471023)
出处 《核农学报》 CAS CSCD 北大核心 2020年第2期356-362,共7页 Journal of Nuclear Agricultural Sciences
基金 河南省科技攻关项目(182102110422).
关键词 高光谱成像 特征波长 连续投影算法 信息熵 霉变玉米 hyperspectral imaging characteristic wavelength successive projections algorithm information entropy moldy maize
  • 相关文献

参考文献26

二级参考文献289

共引文献634

同被引文献69

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部