期刊文献+

一种定位人脸部特征的光学聚类方法 被引量:2

Optical clustering method for locating facial features
下载PDF
导出
摘要 人脸识别技术需要对脸部特征进行定位,从而有助于确保图像一致和建立人脸模型。提出了一种新的脸部特征定位方法,通过Gabor滤波器处理得到人脸图像的强度响应,其中,脸部特征表现为强响应,而其他部分表现为弱响应,如面颊和额头。通过保留强响应以及过滤弱响应,可以获得属于脸部特征的所有像素点。采用了聚类算法——k均值算法将不同的像素点分配到不同的簇里面,每一个簇都代表一个脸部特征。通过在ORL人脸数据库上的测试表明:此方法能精确、快速地定位诸如眼睛、鼻子、嘴等脸部特征。此外,此方法能够在有浓密胡须的对象上成功定位脸部特征,表现出较高的鲁棒性。 The localization on facial features is needed for face recognition since it helps keeping accordance between face images and building face model.In this paper,a novel method for locating facial features was presented which included two steps: filtering and clustering.Face images were firstly processed by Gabor filter into magnitude responses.In the responses,facial features demonstrated relatively high magnitude responses than other facial parts,such as cheek and forehead.By reserving high magnitude responses and removing low magnitude responses,the pixel points belonging to facial features were collected.The method adopted a clustering approach—k-means for separating pixel points into different clusters.Each cluster represented a facial feature.By testing on the ORL face database,the method shows its accuracy and speed on locating facial features,such as eyes,nose and mouth.It also exhibits high robustness in locating features on faces which have thick beard or mustache.
作者 周冕 王向军
出处 《红外与激光工程》 EI CSCD 北大核心 2011年第3期576-580,共5页 Infrared and Laser Engineering
基金 精密测试及仪器国家重点实验室开放基金资助项目
关键词 GABOR滤波器 聚类 人脸识别 Gabor filter clustering face recognition
  • 相关文献

参考文献9

  • 1Turk Matthrew, Pentland Alex. Eigenfaces for recognition [J]. Journey of Cognitive Neuroscience, 1991, 3(1): 71-86. 被引量:1
  • 2Wiskott Laurenz, Fellous Jean Marc, Kruger Norbert, et al. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775-779. 被引量:1
  • 3Cootes Timothy, Edwards Gareth, Taylor Chris. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685. 被引量:1
  • 4Daugman John. Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional visual cortical filters [J]. Journal of the Optical Society of America A, 1985, 2(7): 1160-1169. 被引量:1
  • 5盛文,夏斌.基于Gabor环滤波的纹理分割方法[J].红外与激光工程,2003,32(5):484-488. 被引量:19
  • 6秦翰林,刘上乾,周慧鑫,杨廷梧.采用Gabor核非局部均值的弱小目标背景抑制[J].红外与激光工程,2009,38(4):737-741. 被引量:20
  • 7Lee Tai-Sing. Image representation using 2d Gabor wavelets [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959-971. 被引量:1
  • 8Dunn Dennis, Higgins William. Optimal Gabor filters for texture segmentation [J]. IEEE Transactions on Image Processing, 1995, 4(7): 947-964. 被引量:1
  • 9Samaria Ferdinando, Harter Andy. Parameterization of a stochastic model for human face identification[C]//Proeeedings of IEEE 2nd Workshop on Applications of Computer Vision. Florida USA: IEEE Computer Society Press, 1994: 138-142. 被引量:1

二级参考文献15

  • 1李吉成,沈振康,李秋华.强背景杂波条件下运动的弱小目标检测方法[J].红外与激光工程,2005,34(2):208-211. 被引量:12
  • 2杨杰,杨磊.基于红外背景复杂程度描述的小目标检测算法[J].红外与激光工程,2007,36(3):382-386. 被引量:25
  • 3ZHANG Bi-yin, ZHANG Tian-xu, CAO Zhi-guo, et al. Fast new small target detection algorithm based on a modified partial differential equation in infrared clutter [J].Optical Engineering, 2007,46 ( 10 ): 106401 - 1 - 6. 被引量:1
  • 4REED I S, GAGLIARDI R M, STOTTS L. Optical moving target detection with 3-D matched filtering [J].IEEE Trails on AES, 1988,24(4): 327-336. 被引量:1
  • 5ABDELKAWY E, MCGAUGHY D. Wavelet-based image target detection methods[C]//Proceedings of SPIE, Automatic Target Recognition XIII,2007,5094:337-347. 被引量:1
  • 6ZHANG W, CONG M Y, WANG L P. Algorithm for optical weak small targets detection and tracking:review [C]//IEEE International Conference on Neural Networks & Signal Processing, 2003: 643 -647. 被引量:1
  • 7BUADES A, COLL B, MOREL J. A non-local algorithm for image denoising [C]//IEEE International Conference on Computer Vision and Pattern Recognition,2005,2:20-25. 被引量:1
  • 8Bovik M Clark, Geisler W S. Multichannel texture analysis using localized spatial filters[J]. IEEE Trans PAMI, 1990, 12(1) :55-73,. 被引量:1
  • 9Dunn F D, Higgins W E. Optimal Gabor filters for texture segmentation[J]. IEEE Trans IP, 1995, 4(7) :947-964. 被引量:1
  • 10Weldon T T, Higgins W E, Dunn F D. Efficient Gabor filter design for texture segmentation[J]. Pattern Recognition, 1996,29(12) : 2005-2015. 被引量:1

共引文献36

同被引文献21

  • 1宿丁,张启衡,陶冰洁,谢盛华.复杂背景下多源多目标图像的分形分割算法[J].红外与激光工程,2007,36(3):387-390. 被引量:16
  • 2Aird M, Cobbin D M, Rogers C, et al. A study of the relative precision of acupoint location methods [J]. Journal of Alternative and Complementary Medicine, 2002, 8: 635-642. 被引量:1
  • 3GB/T 23237-2009. Methods of anthropometry for locating acupuncture points [S]. 2009.(in Chinese). 被引量:1
  • 4Raman Maini, Himanshu Aggarwal. Study and comparison of various image edge detection techniques [J]. International Journal of Image Processing, 2009, 3 (1): 1-12. 被引量:1
  • 5Daugman John. Uncertainty relation for resolution in space, spatial frequency and orientation optimized by tow-dimensional visual cortical filters [J]. Journal of the Optical Society of AmericaA, 1985, 2(7): 1100-1169. 被引量:1
  • 6Kamarainen J K, Kyrki V, Kalviainen H. Invariance properties of Gabor filter-based features - overview and application [J]. IEEE T lmag Process, 2006, 15 ( 5 ): 1088-1099. 被引量:1
  • 7翟羽佳.定穴体表标志定位与测量[D].天津:天津大学,2012. 被引量:2
  • 8Lee T S. Image representation using 2D Gabor wavelet [J]. IEEE T Pattern Anal, 1996, 18(10): 959- 971. 被引量:1
  • 9Grigorescu S E, Petkov N, Kruizinga P. Comparison of texture features based on Gabor filters [J]. IEEE Tlmag Process, 2002, 11 (10): 1160-1167. 被引量:1
  • 10Qu Y D, Cui C S, Chen S B, et al. A fast subpixel edge detection method using Sobel-Zernike moments operator [J]. Image and Vision Computing, 2005, 23 ( 1 ): 11 - 17. 被引量:1

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部