期刊文献+

基于增强能量图和二维保局映射的行为分类算法 被引量:8

Behavior classification algorithm based on enhanced gait energy image and two-dimensional locality preserving projection
下载PDF
导出
摘要 行为分类中,现有的特征提取要么方法简单、识别率低,要么特征提取复杂、实时性差。对此,提出一种算法:将步态能量图(GEI)改进,得到增强步态能量图(EGEI);然后将二维保局映射(2DLPP)应用于特征空间降维;最后采用最近邻(NN)法分类。EGEI比GEI更能反映目标特征;2DLPP降维效果好于主成分分析(PCA)及一维保局映射。在Weizmann行为数据库上测试,实验结果表明:该算法简单、准确率高,平均识别率达到了91.22%。 In action classification, methods of feature extraction were either simple with low accuracy, or complicated with poor real-time quality. To resolve this problem, firstly, Enhanced Gait Energy Image (EGEI) was derived from Gait Energy Image (GEl) ; secondly, high dimensional feature space of the action was reduced to lower dimensional space by Two- Dimensional Locality Preserving Projection (2DLPP); then Nearest-Neighbor (NN) classifier was adopted to distinguish different actions. EGEI could extract more obvious feature information than GEl; 2DLPP outperformed principal component analysis and locality preserving projections in dimensional reduction. It was tested on the Weizmann human action dataset. The experimental results show that the proposed algorithm is simple, achieves higher classification accuracy, and the average recognition ratio reaches 91.22%.
出处 《计算机应用》 CSCD 北大核心 2011年第3期721-723,744,共4页 journal of Computer Applications
基金 国家863计划项目(2008AA01Z148) 黑龙江省杰出青年科学基金资助项目(JC200703)
关键词 行为识别 智能监控 特征提取 增强的步态能量图 二维保局映射 action recognition intelligent supervision feature extraction Enhanced Gait Energy Image (EGEI) Two- Dimensional Locality Preserving Projection (2DLPP)
  • 相关文献

参考文献10

二级参考文献59

共引文献30

同被引文献90

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2张兆杨,杨高波,刘志,等.视频对象分割提取的原理与应用[M].北京:科学出版社,2009. 被引量:2
  • 3Center for biometrics and Chinese academy of sciences security re- search, institute of automation[ EB/OL]. [ 2012- 04- 20]. http:// www. cbsr. ia. ac. cn. 被引量:1
  • 4LIU ZONGYI, SARKAR S. Improved gait recognition by gait dy- namics normalization [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(6):863 -876,. 被引量:1
  • 5HUANG XIAXI, BOULGOURIS N V. Gait recognition with shifted energy image and structural feature extraction[ J]. IEEE Transac- tions on Image Processing, 2012, 21(4):2256 -2268. 被引量:1
  • 6WEI SUYUAN, NING CHAO, GAO YOUXING. Biomimetic gait recognition based on motion contours wavelets analysis and mutual information[ C]// 2010 3rd International Congress on Image and Signal Processing. Piscataway: IEEE, 2010, 1:404-408. 被引量:1
  • 7GORELICK L, GALUN M, SHARON E, et al. Shape representa- tion and recognition using the Poisson equation[ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2006, 28 (12) : 1991 -2005. 被引量:1
  • 8BOULGOURIS N V, PLATANIOTIS K N, HATZINAKOS D. Gait recognition using linear time normalization [ J]. Pattem Recogni- tion, 2006, 39(5) : 969 -979. 被引量:1
  • 9KONG YINGHUI, JING MEILI. An identification method of ab- normal patterns for video surveillance in unmanned substation [C]// 2011 Power and Energy Engineering Conference. Piscat- away: IEEE, 2011:1-4. 被引量:1
  • 10Poppe R.A survey on vision based human action recogni-tion[J].Image and Vision Computing,2010,28( 6) :976-990. 被引量:1

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部