期刊文献+

局部敏感的半监督鉴别分析方法

Semi-supervised discriminate analysis method with locality sensitive
下载PDF
导出
摘要 为解决图像处理中的高维特征在模式分类中带来的问题,提出一种基于半监督学习理论的数据降维方法,称为局部敏感的半监督鉴别分析算法。为能够发现局部的流形结构,算法寻找一个能够最小化类内距离的同时最大化类间距离的投影,并且在最优化过程中充分利用无标签数据,控制局部邻域的散度。在人脸识别数据库和行为数据库中的测试结果表明了该算法是有效的。 To solve high-dimensional feature in the pattern classification problems,a data dimensionality reduction method using semi-supervised learning is presented,called locality sensitive semi-supervised discriminate analysis(LSSDA).By discovering the local manifold structure for discriminant analysis,LSSDA finds a projection which minimizes the with-class distance while maximize the between-class distance.The unlabeled data is used as regulatory factors during the optimize process.Extensive experimental results on face recognition database and action recognition database demonstrate the proposed algorithm has an encouraging recognition performation.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第10期2283-2286,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(70781043)
关键词 特征提取 半监督学习 线性鉴别分析 数据降维 主成份分析 feature extraction semi-supervised LDA dimenssionality reduction PCA
  • 相关文献

参考文献19

  • 1Fukunaga K.Introduction to statistical pattern recognition[M]. 2nd ed.Boston:Academic Press,1990. 被引量:1
  • 2Kompalli S, Setlur S, Govindaraju V. Devanagari OCR using a recognition driven segmentation framework and stochastic language models [J]. International Journal on Document Analysis and Recognition,2009,12(2): 123-138. 被引量:1
  • 3Wang L,Suter D.Visual learning and recognition of sequential data manifolds with applications to human movement analysis [J].Cornput Vis Image Underst,2008,110(2): 153-172. 被引量:1
  • 4Golub G,Van Loan C.Matrix computations[M].Johns Hopkins University Press, 1996. 被引量:1
  • 5Hyvarinen A,Karhunen J,Oja E.Independent component analysis[M].Wiley-Interscience,2001. 被引量:1
  • 6Stone J V.Independent component analysis:An introduction[J]. Trends Cogn Sci,2002,6(2):59-64. 被引量:1
  • 7Zheng W-S,Lai J H,Yuen P C, et al.Perturbation LDA:Leaming the difference between the class empirical mean and its expectation[J].Pattem Recognition,2009,42(5):764-779. 被引量:1
  • 8Zheng W-S,Lai J H,Li S Z. 1D-LDA vs.2D-LDA:When is vectorbased linear discriminant analysis better than matrix-based[J]. Pattern Recogn,2008,41 (7):2156-2172. 被引量:1
  • 9Burges C.A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998,2 (2): 121-167. 被引量:1
  • 10Song Y, Nie F, Zhang C.Semi-supervised sub-manifold discriminant analysis [J].Pattern Recogn Lett,2008,29(13): 1806-13. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部