摘要
为了在静态图像中获取有效信息,构建行为模型,提出了行为覆盖区ACA(Action Coverage Area)和行为核心AC(Action Core)的概念,基于Latent SVM(Support Vector Machine)目标识别方法,设计了一种多视角行为模型MVAM(Multiple Viewpoint Action Model)。建立了独立的用于行为模型训练和测试的行为数据库。实验表明,该表示法对静态图像中的人体行为能有效地进行分类和检测。
We study the concepts of ACA( Action Coverage Area) and AC( Action Core),and design a multiple-viewpoint action model based on the advanced object recogniton method Latent SVM( Support Vector Machine). Multi-viewpoint ACA can succinctly describe the non-rigid change and appearance variation due to different viewpoints and multi-viewpoint AC,because the auxiliary of ACA can help to improve the efficiency and robustness of action recognition. We created an independent dataset of human action for model training and testing. Experiments showed that our model had high performance in classifying and detecting human action in still images.
出处
《吉林大学学报(信息科学版)》
CAS
2016年第6期747-752,共6页
Journal of Jilin University(Information Science Edition)
基金
国家自然科学基金资助项目(61101155)
吉林省发展和改革委员会省级产业创新专项基金资助项目(2016C035)
关键词
行为识别
隐变量支持向量机
行为覆盖区
行为核心
多视角行为模型
action recognition
latent support vector machine(SVM)
action coverage area(ACA)
action core(AC)
multiple viewpoint action model(MVAM)