期刊文献+

基于模糊控制器的粒子群优化算法 被引量:1

Particle swarm optimization algorithm based on fuzzy controller
下载PDF
导出
摘要 提出了一种2输入和2输出的模糊粒子群优化算法。将群体适应度方差和极值差均值作为模糊控制器的两个输入参量,分别用来度量群体在搜索空间分布的离散程度和群体中个体的多样性,从而自适应地控制PSO算法在进化过程中的惯性权重和扩展项的学习因子。测试函数仿真结果表明,该算法很好地平衡了"开发"与"探测",取得了比文献中已有的模糊粒子群算法更好的优化性能。 A new fuzzy PSO algorithm(FPSO) with two inputs and two outputs is proposed on the basis of analyzing some existed FPSOs.Fitness variance and mean extremal deviation are considered as the input parameters of FC so as to measure the discreteness of population in space and the population diversity,respectively.Through this way,the inertia weight and learning factor of the extended term can be adaptively adjusted during the evolutionary process.The simulation results have shown that FPSO balances the exploration and exploitation well and obtains better optimization performance than that obtained in literatures.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第24期5335-5338,共4页 Computer Engineering and Design
基金 陕西省教育厅科研计划基金项目(09JK335)
关键词 模糊粒子群优化 模糊控制器 方差 极值差均值 惯性权重 学习因子 fuzzy particle swarm optimization(FPSO) fuzzy controller(FC) variance mean extremal deviation inertia weight learning factor
  • 相关文献

参考文献14

二级参考文献51

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2[1]Kennedy J, EberhartRC. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995.1942 ~ 1948. 被引量:1
  • 3[2]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [ C]. Nagoya, Japan: IEEE Press, 1995. 39~43. 被引量:1
  • 4[3]Eberhart R C, Simpson P K, Dobbins R W. Computational Intelligence PC Tools [M]. Boston, MA: Academic Press Professional,1996. 被引量:1
  • 5[4]Shi Y, Eberhart R C. A modified particle swarm optimizer [A].Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1998.303~308. 被引量:1
  • 6[5]Shi Y, Eberhart R C. Empirical study of particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1999.1945 ~ 1950. 被引量:1
  • 7[6]Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Seoul, Korea: IEEE Press, 2001. 101 ~106. 被引量:1
  • 8[7]Clerc M, Kennedy J. The particle swarm - explosion, stability,and convergence in a multidimensional complex space [ J ]. IEEE Transactions on Evolutionary Computation, 2002,6( 1 ): 58 ~73. 被引量:1
  • 9[8]Eberhart R C, Shi Y. Comparing inertia weight and constriction factors in particle swarm optimization [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation [ C ]. San Diego,CA: IEEE Press, 2000.84 ~ 88. 被引量:1
  • 10[9]Miranda V, Fonseca N. EPSO-best-of-two-worlds meta-heuristic applied to power system problems [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation [ C ]. Honolulu, Hawaii,USA: IEEE Press, 2002. 1080 ~ 1085. 被引量:1

共引文献504

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部