期刊文献+

基于吸引排斥机制的粒子群优化算法 被引量:4

Attraction-repulsion mechanism-based particle swarm optimization algorithm
下载PDF
导出
摘要 针对标准粒子群优化算法在处理复杂函数优化问题时容易陷入局部最优、收敛精度低的缺点,提出了一种改进的PSO算法,该算法把生物学中的吸引排斥思想引入到PSO算法中,充分利用粒子间的相互影响,修正了其速度更新公式,从而维持了群体的多样性,增强了粒子跳出局部最优解的能力。实验仿真结果表明,改进的PSO算法提高了进化后期的收敛速度,有效避免了PSO算法的早熟收敛问题,而且具有较高的收敛精度。 Standard Particle Swarm Optimization(PSO) algorithm falls into local optima easily and has low convergence accuracy when it is used to address the problem of complex functions optimization.In order to overcome the shortcomings,an improved PSO algorithm was proposed.The proposed algorithm integrated the attraction-repulsion mechanism in the field of biology into PSO algorithm and took full advantage of the mutual influence between particles to modify velocity updating formula,and thus maintained population d...
出处 《计算机应用》 CSCD 北大核心 2009年第2期542-544,557,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60674108 60574075)
关键词 粒子群优化 早熟收敛 吸引排斥机制 复杂函数 particle swarm optimization premature convergence attraction-repulsion mechanism complex functions
  • 相关文献

参考文献3

二级参考文献17

  • 1VAN DEN BERGH F,ENGELGRECHT AP.A cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):225-239. 被引量:1
  • 2RUDOLPH G.Self-adaptation and global convergence:a counter-example[C]// Proceedings of the Congress on Evolutionary Computation.New Jersey:IEEE Press,1999:646-651. 被引量:1
  • 3RUDOLPH G.Self-adaptive mutations may lead to premature convergence[C]// Proceedings of Congress on Evolutionary Computation.New Jersey:IEEE Press,2001:653-659. 被引量:1
  • 4POTTER M A,DE JONG K A.A cooperative coevolutionary approach to function optimization[C]// The Third Parallel Problem Solving From Nature.Berlin,Germany:Springer-Verlag,1994:249-257. 被引量:1
  • 5WOLPERT D H,MACREADY W G.No free lunch theorems for search,SFI-TR-95-02-010[R].Santa Fe Institute,Santa Fe,New Mexico,1995. 被引量:1
  • 6WOLPERT D H,MACREADY W G.No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82. 被引量:1
  • 7HOLLAND J H.Adaptation in natural and artificial systems[M].Cambridge,Massachusetts,USA:MIT Press,1975. 被引量:1
  • 8KENNEDY J,EBERHART R C.Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press,1995,4:1942-1948. 被引量:1
  • 9EBERHART R C,SIMPSON P,DOBBINS R.Computational intelligence PC tools[M].Boston,MA:Academic Press,1996:212-226. 被引量:1
  • 10KENNEDY J, EBERHART R C. Particle swarm optimization [C]// IEEE Internatioanl Conference on Neural Networks. Perth Australia: IEEE Press, 1995:1942 - 1948. 被引量:1

共引文献14

同被引文献50

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部