期刊文献+

基于ISFLA的K均值聚类算法

K-means clustering algorithm based on ISFLA
下载PDF
导出
摘要 针对K均值聚类算法和基于混合蛙跳(Shuffled Frog-Leaping Algorithm,SFLA)的K均值聚类算法的一些缺点,提出了基于改进混合蛙跳(Improved Shuffled Frog-Leaping AlgorithmI,SF-LA)的K均值聚类算法。该算法首先将生物学中吸引排斥机制应用在SFLA中,修改了更新策略,形成了ISFLA算法;再用该算法优化K均值聚类算法。理论分析和实验结果表明,该算法提高了收敛速度,有效地避免了SFLA早熟现象,从而改善了对高维复杂数据的搜索效率,仿真结果验证了该算法的可行性和有效性。 Because of the disadvantages of the classical K-means clustering algorithm and K-means cluster analysis based on SFLA,the paper proposes a novel K-means clustering based on an improved SFLA.The proposed algorithm integrated the attraction-repulsion mechanism in the field of biology into SFLA and modified updating strategy and became an improved SFLA.The ISFLA optimizes K-means clustering algorithm.The theory analysis and experimental results show that the proposed algorithm enhances convergence velocity and avoids premature convergence effectively,improving the efficiency of search for complex data.The result of testing shows its feasibility and validity.
作者 刘悦婷
出处 《工业仪表与自动化装置》 2011年第4期9-11,24,共4页 Industrial Instrumentation & Automation
基金 甘肃省支撑计划项目(090GKCA034) 甘肃省自然科学基金资助项目(0916RJZA017)
关键词 SFLA 吸引排斥机制 ISFLA K均值算法 SFLA attraction-repulsion mechanism ISFLA K-means algorithm
  • 相关文献

参考文献11

  • 1Li M J, Ng M K. Agglomerative fuzzy K - means clustering algorithm with selection of number of clusters [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(11) :1519 -1534. 被引量:1
  • 2Krishma, Murty M N. Genetic K - means algorithm [ J ]. IEEE Trans on System, Man and Cybernetics: PartB, 1999,29 ( 3 ) :433 - 439. 被引量:1
  • 3Maulik U, Bandyopadhay S. Genetic algorithm -based clustering technique [ J ] . Pattern Recognition, 2000, 33 (9) : 1455 - 1465. 被引量:1
  • 4汪定伟等编著..智能优化方法[M].北京:高等教育出版社,2007:309.
  • 5熊伟平,曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,20(3):9-12. 被引量:10
  • 6王辉,钱锋.群体智能优化算法[J].化工自动化及仪表,2007,34(5):7-13. 被引量:60
  • 7Wolpert D H, Macready W G. No free lunch theorems for optimization[ J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :67 - 82. 被引量:1
  • 8Birbil S I, Fang S C. An electromagnetism - like mechanism for global optimization [ J ]. Journal of Global Optimization,2003,25 ( 3 ) :263 - 282. 被引量:1
  • 9赵鹏军,刘三阳.求解复杂函数优化问题的混合蛙跳算法[J].计算机应用研究,2009,26(7):2435-2437. 被引量:71
  • 10Babak Amiri, Mohammad Fathian, Ali Maroosi. Application of shuffled frog - leaping algorithm on clustering [ J ]. Adv Manuf Techno1,2009,45 :199 -209. 被引量:1

二级参考文献81

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部