摘要
针对现有基于服务质量(QoS)的语义Web服务发现方法中的不足,提出一种采用模糊粒子群算法的语义Web服务发现方法。根据服务发现问题定义了粒子的位置和速度,引入了模糊理论和增量惯性因子,较好地解决了粒子群算法的未成熟收敛问题,提高了基于粒子群算法的语义Web服务发现方法的查准率。实验验证了该方法的有效性。
Lacking effective Quality of Service (QoS) support in Web services OlSCovery, a new semanuc wed service discovery approach supporting QoS based on fuzzy Particle Swarm Optimization (PSO) was proposed. Firstly, in order to meet users' fuzzy QoS request, fuzzy theory was applied in describing QoS. Then, to improve the PSO, a new theory was proposed that one particle was affected by multi-particles and increment inertia factor was designed. At last, the experimental results have shown the effectiveness of the proposed method.
出处
《计算机应用》
CSCD
北大核心
2012年第5期1347-1350,共4页
journal of Computer Applications
基金
教育部科学研究重点资助项目(107106)
中央高校基本科研业务费资助项目(GK201002011)
关键词
WEB服务发现
WEB服务质量
粒子群优化
模糊
增量惯性因子
Web service discovery
QoS of Web service
Particle Swarm Optimization (PSO)
fuzzy
incrementalinertia weight