期刊文献+

基于QoS和模糊粒子群优化的语义Web服务发现 被引量:3

New semantic web service discovery approach based on QoS and fuzzy particle swarm optimization
下载PDF
导出
摘要 针对现有基于服务质量(QoS)的语义Web服务发现方法中的不足,提出一种采用模糊粒子群算法的语义Web服务发现方法。根据服务发现问题定义了粒子的位置和速度,引入了模糊理论和增量惯性因子,较好地解决了粒子群算法的未成熟收敛问题,提高了基于粒子群算法的语义Web服务发现方法的查准率。实验验证了该方法的有效性。 Lacking effective Quality of Service (QoS) support in Web services OlSCovery, a new semanuc wed service discovery approach supporting QoS based on fuzzy Particle Swarm Optimization (PSO) was proposed. Firstly, in order to meet users' fuzzy QoS request, fuzzy theory was applied in describing QoS. Then, to improve the PSO, a new theory was proposed that one particle was affected by multi-particles and increment inertia factor was designed. At last, the experimental results have shown the effectiveness of the proposed method.
作者 李蜀瑜
出处 《计算机应用》 CSCD 北大核心 2012年第5期1347-1350,共4页 journal of Computer Applications
基金 教育部科学研究重点资助项目(107106) 中央高校基本科研业务费资助项目(GK201002011)
关键词 WEB服务发现 WEB服务质量 粒子群优化 模糊 增量惯性因子 Web service discovery QoS of Web service Particle Swarm Optimization (PSO) fuzzy incrementalinertia weight
  • 相关文献

参考文献15

二级参考文献61

共引文献81

同被引文献37

  • 1樊治平,于春海,尤天慧.一种基于三角模糊数多指标信息的FCM聚类算法[J].控制与决策,2004,19(12):1407-1411. 被引量:17
  • 2张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 3KENNEDY J, EBERHART R C. Particle swarm optimization[ C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995:1942-1948. 被引量:1
  • 4HE QIE, WANG LING. An efficient co-evolutionary particle swarm optimization for constrained engineering designed problems[ J]. Engi- neering Applications of Artificial Intelligence, 2007, 20 ( 1 ) : 89 - 99. 被引量:1
  • 5HEIE WANGLING Ahybndpaicleswaooptmizationwitht feasibility-based rule for constrained optimization[ J]. Applied Math] ematics and Computation, 2007, 186(2) : 1407 - 1422. [. 被引量:1
  • 6FARMANI R, WRIGHT J A. Self-adaptive fitness formulation forconstrained optimization [ J]. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 445-455. 被引量:1
  • 7MEZURA-MONTES E, COELLO C A C. A simple multi-mem- bered evolution strategy to solve constrained optimization problems [ J]. IEEE Transactions on Evolutionary Computation, 2005, 9 (1): 1-17. 被引量:1
  • 8RUNARSSON T P, YAO X. Stochastic ranking for constrained ev- olutionary optimization [ J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294. 被引量:1
  • 9ZHOU YONGQUAN, PEI SHENGYU. An effective adaptive multi- objective particle swarm for muhimodal constrained function optimi- zation[J]. Journal of Computers, 2010, 5(8) : 1144 - 1151. 被引量:1
  • 10RUNARSSON TP, YAO X. Search biases in constrained evolution- ary optimization[ J]. IEEE Transactions on Systems, Man, Cyber- netics, 2005, 35(2): 233-243. 被引量:1

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部