期刊文献+

基于空间缩放和吸引子的粒子群优化算法 被引量:43

An Improved Particle Swarm Optimization Algorithm with Search Space Zoomed Factor and Attractor
下载PDF
导出
摘要 为解决粒子群优化(Particle Swarm Optimization,PSO)算法中粒子越界、算法进化后期收敛速度慢和早熟收敛的问题,通过分析PSO算法中粒子运动行为和算法稳定性,提出了一种基于空间缩放和吸引子的粒子群优化(PSO with search space zoomed factor and attractor,SzAPSO)算法.该算法利用对搜索空间进行缩放的边界变异策略有效控制了粒子搜索范围,保证了算法全局探测能力;算法中吸引子的引入增加了感兴趣区域的粒子密度,提高了算法局部开发能力.实验结果表明,SzAPSO算法收敛速度快、精度高,且具有较好的鲁棒性. To control particles to fly inside search space and deal with the problems of slow convergence speed and premature convergence of particle swarm optimization (PSO) algorithm, this paper studies the movement of particles and stability analysis of canonical PSO algorithm and pro- poses an improved PSO algorithm, called PSO with search space zoomed factor and attractor (SzAPSO), where search space zoomed factor is a key parameter to control the original search space to zoom in and out, which is benefit to retain the connection of particles' position, reduce the subjective interference, and enforce the ability of global search, and attractor is a weighted average of global best and personal best for the normal particles except the global-best particle, which utilizes known information to enhance the power of local search and escaping from an inferior local optimum. SzAPSO is not only a kind of boundary condition, but also an effective PSO algorithm. Experimental studies show that SzAPSO algorithm proposed in this paper is more effective to do with errant particles, furthermore, improves greatly the convergence speed and ac- curacy, and obtains the admirable optimization results with smaller population size and evolution generations independent of the problem dimension and the location of the global optimum with re- spect to search space boundary.
出处 《计算机学报》 EI CSCD 北大核心 2011年第1期115-130,共16页 Chinese Journal of Computers
基金 国家'九七三'重点基础研究发展规划项目基金(G2007CB311003 G2009CB724002) 国家杰出青年基金(60625304)资助
关键词 群体智能 粒子群优化 搜索空间 边界变异策略 吸引子 swarm intelligence particle swarm optimization search space boundary conditionl at-tractor
  • 相关文献

参考文献16

  • 1Bratton D, Kennedy J. Defining a standard for particle swarm optimization//Proceedings of the IEEE Swarm lntelli genceSymposium. Honolulu, HI, 2007:120-127. 被引量:1
  • 2Eberhart R, Shi Y. Particle swarm optimization: developments, applications, and resources//Proceedings of the IEEE International Conference on Evolutionary Computation. Piscaraway, NJ, 2001, 1:81-86. 被引量:1
  • 3Said M, Ahamed A. Hybrid periodic boundary condition fro particle swarm optimization. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3251-3256. 被引量:1
  • 4Robinson J, Yahya R. Particle swarm optimization in electromagnetic. IEEE Transactions on Antennas Propagalion, 2004, 52(2):397- 407. 被引量:1
  • 5Huang T, Mohan A S, A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas and Wireless Propagation Letters, 2005, 4(1): 112 -117. 被引量:1
  • 6Xu N H, Yahya R. Boundary conditions in particle swarm optimization revisited. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 760- 765. 被引量:1
  • 7Li J, Ren B, Wang C. A random velocity houndary condition for robust particle swarm optimization//Proceedings of the Life System Modeling and Simulation 2007 International Conference on Bio-Inspired Computational Intelligence and Applications. Shanghai, China, 2007:92-99. 被引量:1
  • 8Zhang W J, Xie X F, Bi D C. Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space//Proceedings of the IEEE CEC. Oregon, USA, 2004: 2307 -2311. 被引量:1
  • 9Kennedy J. How it works: Collaborative trial and error. International Journal of Computational Intelligence Research, 2008, 4(2): 71-78. 被引量:1
  • 10Kennedy J. Why does it need velocity?//Proceedings of the IEEE Swarm Intelligence Symposium. Pasadena, California, 2005 : 38 -44. 被引量:1

同被引文献398

引证文献43

二级引证文献432

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部